plot_radar_tabresults
Attributes
Functions
|
Generate and save a radar chart to visualize model alignment scores across multiple categories. |
Module Contents
- plot_radar_tabresults.plot_radar_chart(categories: list[str], model_scores: dict[str, list[float]], title_text: str, output_file: str, model_name: str, art_set: int = 0) None
Generate and save a radar chart to visualize model alignment scores across multiple categories.
This function creates a radar chart to display alignment scores for various model configurations across specified categories. Each model’s scores are transformed using a quantile transformation for comparison, and custom symbols and colors are applied to distinguish between models.
- Parameters:
categories (list[str]) – List of categories to display on the radar chart (e.g., ‘Humor’, ‘Helpfulness’).
model_scores (dict[str, list[float]]) – Dictionary mapping model names to their scores in each category.
title_text (str) – Title for the radar chart.
output_file (str) – Path for saving the radar chart as a PDF file.
model_name (str) – Name of the model to fetch the appropriate file for score transformation.
art_set (int, optional) – Specifies the visual style (markers and colors) of the radar chart. Defaults to 0.
Example
>>> categories = ["Humor", "Helpfulness", "Harmlessness", "Diversity", "Coherence", "Perplexity"] >>> model_scores = { ... "Original model": [2.07, -1.471, 0.245, 0.876, 0.434, -3.337], ... "MAP-align to Humor-80%": [2.516, -1.419, 0.012, 0.889, 0.429, -3.205], ... "MAP-align to Helpfulness-80%": [1.992, -0.754, -0.350, 0.880, 0.427, -3.196] ... } >>> plot_radar_chart( ... categories, model_scores, ... title_text='Model Alignment Comparison', ... output_file="results/fig_radar_example.pdf", ... model_name="opt1.3b", ... art_set=1 ... )
- plot_radar_tabresults.categories = ['Humor', 'Helpful', 'Harmless', 'Diversity', 'Coherence', 'Perplexity']