
Preliminary Written Exam Report (WPE)
AID: Adaptive Integration of Detectors for Safe AI with Language Models

Xinran Wang
Department of Computer Science and Engineering

University of Minnesota
wang8740@umn.edu

Abstract

As Large Language Models (LLMs) increas-
ingly influence content generation across di-
verse platforms, there is a heightened urgency
to regulate their outputs to ensure safe usage.
However, defining “safety” is complex, given
that entities across domains may interpret it
through varied lenses and develop detectors
from specific safety criteria. To address this
complexity, we introduce the approach of Adap-
tive Integration of Detectors (AID) to orches-
trate the strengths of multiple pretrained detec-
tors to ensure comprehensive effectiveness in
diverse scenarios. AID employs a Mixture-of-
Experts (MoE) framework, wherein it dynami-
cally assigns and learns data-adaptive weights
for each detector using domain-specific anno-
tated data and LLM-extracted features. We pro-
vide theoretical insights into why MoE can be
effective by showing its optimality in a classi-
cal Neyman-Pearson setting. Our experimental
studies using various detection tasks curated
from benchmark datasets demonstrate AID’s
ability to synergistically combine the unique ca-
pabilities of individual detectors. For example,
it is observed that AID can improve the area
under the curve (AUC) by an absolute value
of 0.07 to 0.21, with a median of 0.12, com-
pared with the best individual detectors. The
improvement is particularly significant for com-
plex detection tasks that mix different unsafe
data sources.

1 Introduction

Large language models (LLMs) have seen
widespread use across diverse domains, including
healthcare, education, finance (Wu et al., 2023),
and more, due to their remarkable ability to process
and generate human-like text. However, with the
increasing deployment of LLMs, safety concerns
have emerged, including issues of bias, misinforma-
tion, and potential ethical implications. To address
these challenges, there is a pressing need for cus-
tomized, scalable safety detection mechanisms spe-

cific to LLMs, enabling effective and responsible
application in various domains.

A primary concern is ensuring the safety of
model-generated content. This has motivated re-
cent advancements in content safety detection that
target specific types of unsafe content. Notable
among these are: Perspective API (Lees et al.,
2022), a private model developed by Jigsaw and
Google to identify toxic comments for moderating
online discussions platforms, HateBERT (Caselli
et al., 2020), which is a BERT-based model specifi-
cally fine-tuned to detect hate speech. RoBERTa-
based models for hate speech detection (Baruah
et al., 2020; Ali et al., 2022; Xu and Liu, 2023),
which are fine-tuned from the RoBERTa model
using abusive language on social platforms, and
Detoxify developed by Unitary (Hanu and Unitary
team, 2020), an open-source tool to pretrain models
to predict toxic comments.

However, the concept of “safety” in digital con-
tent can be multifaceted and subjective, varying
across different domains and societal norms. The
existing developed detection models are either
closed-source or pretrained from a specific data
source that focuses on a specific type of unsafe con-
tent. As a result, despite their individual strengths,
these state-of-the-art detectors typically operate in
isolation. This siloed approach leads to limited
effectiveness when encountering complex content
that spans multiple categories of unsafety. Further-
more, these models, once trained, do not adapt to
the evolving nature of online discourse, leading to
reduced efficacy over time. These challenges moti-
vate our work to adaptively integrate these diverse
detection mechanisms.

This paper proposes a perspective to address
the safety detection through an Adaptive Integra-
tion of Detectors (AID), which seeks to leverage
the strengths of various pretrained detectors for
comprehensive and effective safety regulation in
content generation. Specifically, we formulate the

1

Detector
Hate

Detector
 Offensive

Detector
Toxic

Pretrained Detectors

Detect Hate or Toxic

User Interface

Hate

Offensive

Toxic

Hate

Offensive

Toxic

Obscene

Insult

Identity Hate

Severe Toxic

Threat

Figure 1: Illustration of the detection system that aims
to detect user-specified set of unsafe tags.

problem as detecting whether a sentence should be
tagged as “unsafe” based on user-selected unsafe
aspects, such as insult, hate, offense, sex, and vi-
olence, each corresponding to a pretrained safety
detector. Figure 1 shows the use scenario of our
detection problem. Then, we train an AID model,
which is inspired by the Mixture-of-Experts (MoE)
framework. The experts represent many pretrained
detectors, and we aim to learn a weighting scheme
that aggregates detectors’ results. In this way, we
can accommodate various user-selected tasks by
only adjusting the weights, which are data-adaptive,
without intensive retraining.

The main contribution of this work is as follows:

• We develop an AID approach based on the
MoE framework to integrate multiple content
safety detectors. This approach parameter-
izes data-adaptive weights assigned to each
detector to integrate and then learns those in-
tegration weights in a data-driven way.

• We give an optimality analysis of the proposed
approach from a Bayesian perspective, which
shows it can be significantly better than stan-
dard ensemble approaches.

• We conduct extensive experimental studies to
demonstrate of AID’s excellent performance
using benchmark datasets “Toxic Comment
Classification Challenge” and “Hate Speech
and Offensive Language”, for which we cu-
rated a variety of user-specified detection
tasks that mix different unsafe tags. Our re-
sults show that AID can synergistically com-
bine the unique capabilities of individual de-
tectors, which corroborate our developed the-
ory. It is observed that AID can improve the
area under the curve (AUC) by an absolute
value of 0.07 to 0.21, with a median of 0.12,
compared with the best individual detectors.
The improvement is particularly significant
for complex detection tasks that mixes differ-

ent unsafe data sources.

• We also propose data-free integration meth-
ods for the scenario where annotated data are
unavailable. Our experiments show that the
performance of data-free integration is not as
effective as AID-based integration.

2 Related Work
Mixture-of-Experts Models. Existing approaches
to AI safety often focus on single-task detection
tasks, utilizing annotated data to train specialized
detectors for identifying predefined safety tags.
Our proposed approach seeks to extend beyond
this by focusing on compound-task detection. Our
developed approach aims to flag an input as pos-
itive if it is categorized as positive under any of
the user-selected tags within a supported tag set. It
achieves this by mixing the detection results offered
by single-task detectors. This detection system
can be regarded as a type of Mixture-of-Experts
(MoE) architecture (Masoudnia and Ebrahimpour,
2014; Shazeer et al., 2017; Riquelme et al., 2021;
Fedus et al., 2022; Chen et al., 2022). In deep
learning, MoE refers to a process that learns a task
through the division of labor among specialized
neural networks. The existing literature focuses
on the joint training of these specialized networks,
known as “experts”, along with a routing mech-
anism to determine the activation of experts for
given inputs. MoE has also gained much research
interest in training large foundation models with
reduced memory costs. However, our approach de-
viates from this line of action by learning the way
of integrating existing, pretrained detectors into the
MoE architecture.

Safety Detection. LLMs have revolutionized
multiple sectors by offering capabilities that closely
mimic human-like text generation. However, the
deployment of LLMs raises significant safety con-
cerns, including the perpetuation of biases, dis-
semination of misinformation, and various ethical
dilemmas. Recent efforts in content safety detec-
tion have yielded notable methods targeting spe-
cific unsafe content types. For instance, the Per-
spective API developed by Jigsaw and Google (Jig-
saw and Conversation-AI, 2018) aims to identify
toxic comments to aid moderation on online dis-
cussion platforms (Wang and Chang, 2022). Hate-
BERT (Caselli et al., 2020) is a BERT-based model
fine-tuned to specifically target hate speech. This
model underscores the potential of transformer-

2

based architectures in identifying nuanced forms
of online hate. Similarly, various RoBERTa-based
models have been proposed for specific safety ap-
plications (Vidgen et al., 2020; Ali et al., 2022). De-
spite these advances, the concept of “safety” in dig-
ital content remains complex and subjective, vary-
ing across different contexts and societal norms.
The siloed nature of existing detection models, of-
ten developed for specific content types and based
on particular data sources, need to keep pace with
the evolving dynamics of online discourse.

3 Problem Formulation
Setup and Notation. We formulate the problem
as follows. Suppose the input is represented by
a variable x ∈ X̃ . A detection task is to decide
whether the input is associated with a tag, denoted
by t, that represents the safety aspect of interest.
A detector associated with this task is defined as
a function that maps from X̃ to Ỹ

∆
= {0, 1}, writ-

ten as dt : x 7→ dt(x), where dt(x) = 1 means x
should be tagged as positive t. Suppose d(x) can
be written as d(x) = 1s(x)−τ for a score function
s (Ding et al., 2018), in which varying choices of τ
determine the tradeoffs between the false positive
rate and detection power. A classical score func-
tion is s(x) = log pt(x), where pt is the density
of x associated with positive t. A larger s(x) is
interpreted as more likelihood of x following pt.
While this logarithmic score has been widely used
in decision theory and anomaly detection (Pang
et al., 2021) due to its deep root in the uniformly
most powerful test (Casella and Berger, 2021, Ch.
8) and Kullback-Leibler divergence (Shao et al.,
2019; Wu et al., 2022). In practice, the distribution
pt is often approximated through generative mod-
els such as the autoencoders (Elkhalil et al., 2021;
Bank et al., 2023). Our evaluation metric for detec-
tion performance is the area under the curve (AUC),
which measures the two-dimensional area under-
neath the receiver operating characteristic (ROC)
curve, which only depends on the score function s.

Formulation. Suppose a user can access a set of
K pretrained detectors from several entities, e.g.,
companies and research labs that release models or
their APIs, through private or public clouds plat-
form such as Huggingface (Jain, 2022). Each de-
tector dk has been trained to detect a tag tk, for
k ∈ [K]. The union of all tags is denoted by
T = {tk, k ∈ [K]}. Suppose a user is interested
in detecting whether any given input is associated
with a particular subset of unsafe tags C ⊆ T . Our

problem is to develop a detection strategy to meet
any user-specific need, namely to accurately flag
an input as positive if it is associated with any tags
within C (as shown in Figure 1).

To put this problem into perspective, let us con-
sider two special cases as examples. In the first
case, C = {t} is a singleton set corresponding to
a classical detection problem that uses only the
detector associated with t. Our insight is that de-
tectors associated with tags in T − C can possibly
provide side information to enhance detection ac-
curacy if they contain mutual information (from
an information-theoretic perspective) with the tag
of interest conditional on the input. As a result,
theoretically, there should exist a way to utilize
detectors associated with seemingly unrelated tags
to contribute to the decision about t. For example,
detecting whether content has ‘toxicity’ could be
closely related to detecting ‘violence’. The sec-
ond case is C = T , which concerns a union of
the existing tags available, e.g., detecting whether
content falls into either ‘toxic’, ‘violent’, or ‘offen-
sive’ as they may constitute all those that should
be moderated. The two cases show the interest for
integrating detectors for any user-specific task C.

4 Adaptive Integration of Detectors (AID)
This section proposes 1) an approach to learn the
integration mechanism, 2) a theoretical justifica-
tion of using the MoE structure for detection, 3)
an example to show why data-adaptive integration
can perform significantly better than nonadaptive
methods, and 4) natural baselines of data-free inte-
grating detectors to be revisited in the experiments.

4.1 Description of AID
We construct a detector in the form of dT ,C(x)

∆
=

1s(x)>τ , the subscript C highlights the user’s inter-
est of detection and s is in the form of

s(x; Θ)
∆
=

∑
k∈[K]

wk(x; Θ) · sk(x), (1)

a weighted sum of detectors associated with T .
Here, the weights wk(x; Θ) are adaptive to x and
satisfy

∑
k∈[K]wk(x; Θ) = 1. The τ is a threshold

that, once sweeping from −∞ to ∞, produces an
ROC of the decision rule. We parameterize

wk(x; Θ) =
exp{−θT

khk(x)}∑
k∈[K] exp{−θT

khk(x)}
, (2)

where hk(x) is an embedding of x, e.g., from
pretrained sentence-transformer (SBERT) mod-

3

Detector
Hate

Detector
Toxic

Output score
s1

Output score
sk

w1

wk

Input Text

Input-adaptive weights

Final score
s

Decision

Figure 2: Illustration of the AID approach, which aims
to construct an data-adaptive weighting of detectors to
integrate for detecting a user-specified set of unsafe tags.

els (Reimers and Gurevych, 2019), and Θ =
{θk, k ∈ [K]} are learnable parameters.

To learn Θ, consider a set of data inputs anno-
tated with tags in C, denoted by (x, yt, t ∈ T).
From this, we can create a set of n training data
in the form of (x, yC) where yC = 1 if and only if
there exists a t ∈ C such that yt = 1.

Loss function. Optimizing directly for AUC,
which is the area under the ROC curve, is not
straightforward because the AUC itself is not dif-
ferentiable with respect to the model parameters.
Thus, we choose a loss function as a surrogate for
the AUC. A common method is to use a ranking
loss, like a pairwise ranking loss. This loss encour-
ages the model to correctly rank positive samples
higher than negative samples. Given that AUC is
the probability a randomly chosen positive exam-
ple is ranked more highly than a randomly chosen
negative example (Fawcett, 2006), it is natural to
minimize the following ranking loss to indirectly
optimize for AUC:

min
Θ

L(Θ)
∆
=

∑
(i,j): yCi =1,yCj =0

log
(
1 + e−λ·δi,j(Θ)

)
with δi,j(Θ)

∆
= s(xi; Θ)− s(xj ; Θ)

where s was introduced in Equation (1) and λ is a
tuning parameter. However, we found the above
problem is computationally costly to run. To see
that, consider optimizing the above loss with the
stochastic gradient descent approach and a batch
size of b. Each batch requires O(b2) computation
and memory costs to evaluate the gradient of the
loss function. Moreover, the optimization results
could be sensitive to hyperparameters such as λ.

Alternatively, we propose to minimize the fol-

Algorithm 1 AID algorithm
Input: Detectors represented by functions st, t ∈
T , input representations ht : x 7→ ht(x), t ∈ T ,
training data (xi, y

C
i), i = 1, . . . , n, pertaining to

the user-specified task
Parameter: Θ as introduced in (2)
Output: x 7→ s(x; Θ̂)

1: Initialize parameter θt = 0, t ∈ T
2: Run SGD to optimize the Objective (3)
3: return Θ̂

lowing loss:

min
Θ

L(Θ)
∆
=
(
E{Dneg}+ S{Dneg}

)
−

(E{Dpos} − S{Dpos}
)

(3)

where E and S denote the empirical expectation
and standard deviation of a dataset,

Dneg(Θ)
∆
= {s(xj ; Θ) : j : yCj = 0}

Dpos(Θ)
∆
= {s(xi; Θ) : i : yCi = 1}.

The intuition of the above loss function is to maxi-
mize the gap between the average score of the pos-
itive example and that of the negative example, ac-
counting for their uncertainty given a finite sample
(as reflected by one standard deviation). From our
experimental studies, the detection performance is
not sensitive to the use of other multiplies of the
standard deviation, such as two and three. With the
above loss function, each batch would require only
O(b) computation and memory costs.

Figure 2 shows the AID approach. The pseu-
docode is summarized in Algorithm 1.

4.2 Why Using Linear Aggregations
It is natural to consider a broader form of aggre-
gating the individual detectors’ scores to target any
user-specific detection task. We theoretically show
that linear aggregation can be AUC-optimal from
a Bayesian perspective when the data distributions
associated with each tag are known.

First, we introduce some background notations
needed for the theory. Recall the simple-versus-
simple hypothesis testing problems. Let p0 and p1
be two distribution densities that represent “safe”
and “unsafe” data. The classical Neyman-Pearson
Lemma (Neyman and Pearson, 1933) states that for
detecting the presence of an alternative hypothesis,
x ∼ p1, against a null hypothesis, x ∼ p0, the
likelihood ratio test is uniformly the most powerful,

4

giving the largest AUC. Specifically, one decides
to reject the null, or claim “unsafe”, if the statistic

log
p1(x)

p0(x)
= log p1(x)− log p0(x) (4)

is above a threshold τ . In our detection problem
setup, the optimal score knowing the unsafe data
source is from p1 would be

s1(x)
∆
= log p1(x)− log p0(x). (5)

However, in a general setting where unsafe con-
tent could be generated from diverse sources, the
notion of optimality relies on the formulation of the
user-specified detection task. Consider a mixture
of p1, . . . , pK that represent K unsafe data distribu-
tions, in the form of

∑
k∈[K]wkpk. Let W ∈ [K]

denote a Multinomial random variable with prob-
abilities wk = P(W = k), k ∈ [K]. Then, we
can represent the user-specified unsafe data X and
distribution as

X ∼ pW , W ∼ Multinomial(w1, . . . , wK). (6)

Based on Equation (5), the optimal score involv-
ing a random data source W would be S

∆
=

log pW (x)− log p0(x).
Consider S as an unknown quantity, and let Ŝ(x)

be an estimator of it given measurements x. Recall
that the mean square risk is defined by E(Ŝ(x)−
S)2, where the expectation is taken over the joint
distribution of S, x.
Theorem 1 The Bayes estimate of the optimal
score, namely the one that minimizes the Bayes
risk among all estimators, is given by

sBayes(x) =
∑
k∈[K]

wk(x) log pk(x)− log p0(x),

where wk(x)
∆
=

wkpk(x)∑
j∈[K]wjpj(x)

(7)

for any given x.
Theorem 1 gives a theoretical justification for

using a linear MoE architecture–it contains the best
estimator (under square loss) of the score. More-
over, the optimal mixing weights w(x) correspond-
ing to Equation (1) can be interpreted as the poste-
rior probability of x belonging to the unsafe distri-
bution. This is intuitive as the user-specified task
is to detect a mixture of individual unsafe distribu-
tions. Without knowing where the input x comes
from, we use its posterior probability of belonging
to the training data of each expert as a soft indica-
tor, in which the prior probability is specified by
wi, i ∈ [K].

4.3 Why Data-Adaptive Weights
Next, we provide an example showing that using
data-adaptive weights can be significantly better
than any non-adaptive weighted average in integrat-
ing detectors.

Consider the safe data distribution p0 and two
unsafe data distributions p1, p2 are Gaussian with
means 0, µ1, µ2, respectively, and unit variance.
The user-specified task is to detect unsafe data
drawn from an equal mixture of p1 and p2. In
other words, we have x ∼ p0 under the null hy-
pothesis, and x ∼ (p1 + p2)/2 under the alterna-
tive hypothesis. Consider two integration schemes
based on the MoE model: 1) data-adaptive weights
following Theorem 1, and 2) non-adaptive weights
sAvg(x) =

∑2
k=1

1
2 log pk(x)− log p0(x).

Theorem 2 Suppose the safe data input is gener-
ated from x ∼ p0 and the unsafe data input is from
x ∈ p1. Suppose µ1 < 0 < |µ1| < µ2 and |µ2/µ1|
is bounded by a constant. Using the data-adaptive
integration introduced in Equation (7) with equal
prior weights w1 = w2 = 1/2, the AUC converges
to one as µ2 + µ1 and −µ1 converge to infinity.
Meanwhile, using the non-adaptive, equal-weight
integration, the AUC would be no larger than 0.5
offered by the random guess.

The above theorem shows the necessity of inte-
grating detectors adaptively to the inputs.

4.4 Data-Free Alternatives to AID
In case there is no annotated data for the user-
specified detection task for AID training, we pro-
pose some data-free integration methods. They
also provide natural baselines that we will revisit in
the experimental evaluation. In these methods, we
suppose the input x is represented by the SBERT
embedding vector.
Equal-weight integration (“Avg”). We use
s(x)

∆
=

∑
k∈[K] sk(x)/K for detection.

Max-score integration (“Max”). We use s(x)
∆
=

maxk∈[K] sk(x) for detection. The intuition is that
the larger the score, the more tendency the input is
generated from one of the unsafe distributions.
Similarity-based integration using input embed-
dings (“Similarity”). Suppose a user can access the
mean of the training inputs’ SBERT embeddings
for each detector k, denoted by x̄k. The cosine sim-
ilarity (“cos”) between an input x and x̄k is used
to quantify the relevance of the kth detector. Then,
the user uses s(x) =

∑
k∈[K]wksk(x), where w

the Softmax applied to cos(x̄k, x), k ∈ [K].

5

Bayesian integration using input embeddings
(“Bayes-Input”). Inspired by Theorem 1, we use
data-adaptive weights as defined in (7), but approx-
imating wk(x) by assuming wk = 1/K, pk(x) is
Gaussian whose mean and covariance matrix are
estimated from training data for detector k.
Bayesian integration with variational autoen-
coder (VAE) embeddings (“Bayes-VAE”). We use
a similar approach as the above, but approximat-
ing pk using the Gaussian distribution of the VAE
embeddings (Xu et al., 2017).

5 Experimental Study
5.1 Experimental Setups
Data sources. We use a public dataset called
“Toxic Comment Classification Challenge” (Jigsaw
and Conversation-AI, 2018) (referred to as Tox-
icComment), which contains a large number of
Wikipedia comments. Each comment has been la-
beled by human raters for safety behavior, where
the data curator names the safety as “toxicity”. The
subtypes of annotated toxicity includes: “toxic”,
“severe toxic”, “obscene”, “threat”, “insult”, “iden-
tity hate” (id-hate). In other words, each sentence,
if unsafe, is annotated with one or more of the
above six tags; otherwise, it is regarded as “safe”.
We also use a dataset called “Hate Speech and Of-
fensive Language” (referred to as HateOffensive)
made by the authors of (Davidson et al., 2017),
which contains a large number of tweets origi-
nally collected from Twitter API and annotated by
CrowdFlower (Van Pelt and Sorokin, 2012) work-
ers. Each tweet in HateOffensive was annotated
with one of three categories: hate speech (“hate”),
offensive but not hate speech (“offensive”), or nei-
ther offensive nor hate speech (“safe”).

User-specified safety detection task. In prac-
tice, a user may be interested in detecting unsafe
sentences with specific contexts, so the definition
of safety tags in the data source originally used
for training safety detectors may not be relevant
to the user. To simulate a complex real-world set-
ting where a user’s unsafe data distribution may
deviate from pre-defined categories, we construct
user-specified safety detection tasks by mixing data
from the existing unsafe tags. For example, the un-
safe data distribution of a user’s interest consists of
50% “toxic” from the ToxicComment data source
and 50% “offensive” from the HateOffensive data
source. Accordingly, our performance evaluation
of detectors is based on test data constructed for
various user-specified safety detection tasks.

Data preparation. For each data source, we
split it into three sets: pretraining, training, and test-
ing. The pretraining set is used to pretrain safety
detectors that are integrated for a variety of user-
specified safety detection tasks. The training set
is used to construct data for integrating pretrained
detectors. Depending on the user-specific safety
detection tasks that we simulate, the training data
is constructed accordingly by mixing the annotated
data from the original data sources. The testing set
is used to evaluate the performance of integrated
detectors and baselines. Its construction is in line
with the training set to follow the same distribution
as designated by the user’s need. To avoid double
use of data in both training and testing, we evenly
split each data source into three sets at the begin-
ning of all the experiments. For our ablation study
of the influence of training size, we resample with
replacement from the pre-split training set.

Pretrained detectors to integrate. To demon-
strate the proposed approach of integrating de-
tectors, we need to curate several pretrained de-
tectors. The detector employs a hybrid model
architecture that integrates a Variational Autoen-
coder (VAE) with embeddings derived from a
transformer-based model (bert-base-uncased from
Huggingface). Specifically, the VAE utilizes the av-
eraged embeddings from the transformer model’s
last hidden state as its input. This setup enables
the VAE to be trained on user-specific data deemed
unsafe, without necessitating the inclusion of safe
data during the training process. For detection pur-
poses, a future input sentence is processed, and
the VAE generates a score based on the negative
log-likelihood of the output—the higher the score,
the greater the likelihood of the input being safe.
For the above data sources, we would have a total
of 8 pretrained detectors. For AID integration, we
use the embedding extracted from a public SBERT
model (Reimers and Gurevych, 2019; Huggingface,
2023) as the representation of each input sentence.

Metrics. Each detector takes an input sentence
and outputs a score. In practice, one needs to set
a threshold to determine whether the score is suffi-
ciently large to claim it as safe. As different thresh-
olds lead to varying tradeoffs in Type I/II error
rates, we use AUC as a quantitative measure to
evaluate the performance of detectors.

5.2 User-Specified Safety Detection Tasks
We first summarize the performance of AID and
two data-free integration approaches: Avg and Max

6

Method toxic severe obscene threat insult id-hate hate offensive

AID 0.92 0.99 0.95 0.97 0.96 0.97 0.90 0.93
Avg 0.76 0.85 0.80 0.80 0.79 0.78 0.67 0.70
Max 0.79 0.85 0.82 0.83 0.82 0.80 0.66 0.70
Similarity 0.75 0.84 0.79 0.79 0.79 0.76 0.65 0.71
Bayes-Input 0.51 0.63 0.51 0.70 0.52 0.76 0.57 0.76
Bayes-VAE 0.68 0.78 0.72 0.73 0.71 0.71 0.58 0.62

Dtoxic 0.72 0.81 0.76 0.72 0.75 0.72 0.66 0.70
Dsevere 0.82 0.92 0.86 0.88 0.85 0.85 0.69 0.74
Dobscene 0.73 0.83 0.77 0.75 0.76 0.74 0.68 0.73
Dthreat 0.79 0.88 0.83 0.88 0.83 0.80 0.66 0.71
Dinsult 0.70 0.80 0.74 0.72 0.73 0.72 0.65 0.68
Did-hate 0.76 0.84 0.80 0.80 0.80 0.81 0.67 0.71
Dhate 0.73 0.80 0.77 0.74 0.77 0.76 0.63 0.65
Doffensive 0.69 0.75 0.73 0.74 0.72 0.71 0.58 0.61

Table 1: Performance comparison of AID that integrates
pretrained detectors, baseline methods, and individual
pretrained detectors, evaluated by AUC. The safety de-
tection task is defined by declaring the sentences drawn
from a tag shown as the column name.

introduced in Subsection 4.4, and those pretrained
detectors on the same detection tasks (denoted by
Dtag). Other data-free methods will be studied in
the ablation studies. In training AID, we use 2000
sentences randomly sampled from the data distri-
bution as defined by the detection task and 10000
sentences from the same distribution for testing.
The results are summarized in Table 1 and Table 2.

In Table 1, the detection tasks are defined by
whether a sentence is associated with a particu-
lar unsafety tag as in the original data source. In
Table 2, we curate several user-specified tasks by
mixing data of different tags from the original anno-
tated data sources. Specifically, the detection tasks
are defined by whether a sentence is associated
with either one of two unsafety tags, e.g., “toxic or
offensive”. We implement this by a sampling of
50% “toxic” and 50% “offensive” from the original
data sources as the task-specific unsafe data.

The results show that the proposed integration
method can achieve much better performance when
compared with baseline methods. For example, Ta-
ble 1 indicates that by integrating detectors whose
associated tags are not directly relevant to the task
could significantly boost the detection power. Ta-
ble 2 show the inadequacy of a single detector to
complicated tasks and how combining detectors
could help gain. For example, on the task that spec-
ifies “toxic” and “offensive” as unsafe tags, the
AID achieves an AUC of 0.92, while an individual
detector could only achieve 0.7 or 0.62.

5.3 Sparse AID and Computational Analysis
This section analyzes the computational efficiency
of the AID approach. The computation for each
input can be divided into three main steps: 1) Rep-

Method toxic/offensive toxic/hate toxic/severe obscene/threat

AID 0.92 0.91 0.95 0.96
Avg 0.71 0.70 0.80 0.80
Max 0.74 0.72 0.82 0.83
Similarity 0.72 0.70 0.80 0.79
Bayes-Input 0.64 0.62 0.72 0.72
Bayes-VAE 0.55 0.60 0.56 0.61

Dtoxic 0.70 0.69 0.76 0.74
Dsevere 0.77 0.76 0.68 0.87
Dobscene 0.72 0.71 0.69 0.76
Dthreat 0.74 0.73 0.69 0.86
Dinsult 0.68 0.68 0.69 0.73
Did-hate 0.73 0.72 0.68 0.80
Dhate 0.66 0.65 0.68 0.76
Doffensive 0.62 0.61 0.68 0.74

Table 2: Like Table 1, but with safety detection tasks
defined by sentences drawn from a mixture of 50% tag
A and 50% tag B indicated by the column name.

resentation, where a sentence is converted into a
numerical vector, 2) AID Processing, where the
vector undergoes a forward pass through the AID
model to compute K weights, and 3) Score Ag-
gregation, where scores from K detectors are cal-
culated and aggregated to derive a final decision
score. The AID Processing step as defined in Equa-
tion (2) incurs a constant time cost per input and is
substantially less time-consuming than the Score
Aggregation step. Notably, the latter’s overall com-
putational demand increases with the number of de-
tectors K, which is also the computation required
for the Avg and Max baseline methods.

To enhance efficiency, we introduce a variant of
the AID method that sparsify the smaller weights
to zero on a per-input basis, thereby only keeping
L < K non-zero weights wk(x; Θ), which are then
normalized to sum to one. This adaptation ensures
that only L detectors are evaluated, significantly
decreasing the computational load in the Score Ag-
gregation step to a ratio of L/K.

Employing the same experimental setup as pre-
sented in Table 1, we conducted tests to assess both
the accuracy and the computation time of the origi-
nal AID utilizing all 8 detectors (“AID-8”) and its
adaptive variant that selectively activates only L
detectors, for L = 7, . . . , 1 (“AID-L”). In Figure 3,
we report both the detection performance and com-
putation time. The AUC was averaged across all
the tasks. The computation time was measured
in seconds, run on an A100 GPU, averaged over
batches of 1024 inputs. Values are reported at a
scale of 10−4, and standard errors are within 10−5.
As shown in Figure 3, this adaptive pruning ap-
proach maintains performance integrity until the
number of activated detectors is reduced to one.
Moreover, implementing L < K substantially low-

7

AID-8 AID-7 AID-6 AID-5 AID-4 AID-3 AID-2 AID-1
AID Variant

0.80

0.83

0.85

0.88

0.90

0.93

0.95

0.98

1.00

Av
er

ag
e A

U
C

Average AUC

0

10

20

30

40

50

T
im

e
(1

0
4 se

co
nd

s)

Comparison of AID Variants: Average AUC and Times

Resource Computation Time
System Time

Figure 3: Performance, accumulated resource computa-
tion time, and system time comparison of AID and its
variants that retain only L active detectors (“AID-L”),
with the same setup as Table 1. System time stays al-
most constant as detectors can operate in parallel.

Method toxic/offensive toxic/hate toxic/severe toxic obscene/threat

AID (n = 200) 0.89 0.89 0.93 0.94
AID (n = 600) 0.91 0.90 0.94 0.94
AID (n = 2000) 0.92 0.91 0.95 0.96
AID (n = 6000) 0.92 0.90 0.95 0.96
Avg 0.72 0.70 0.80 0.80
Max 0.74 0.72 0.82 0.83

Table 3: Ablation on sample sizes used for AID training.

ers the overall computational burden. Additionally,
we recorded the time costs for executing the AID
forward pass and generating per-detector scores,
which were 1.7 and 5.1 seconds per 1024 inputs,
respectively. As illustrated in Figure 3, the AID
component introduces a negligible increment in
computation time to the overall detection process.

5.4 Ablation Studies
Different training sizes. We vary the sample size
used for training AID to n = 200, 600, 2000, 6000,
and consider the same experimental setting as in
Table 3. The results show that AID is not much
sensitive to training sample size.

Other baseline methods. We perform an ab-
lation study of all the data-free baseline methods
in Section 4.4, using the same setting as Table 1.
We report the results in Table 4. The results show
that the data-free integration approaches do not
perform better than the simpler approaches based
on average or max score. We believe the “Bayes-
Input” and “Bayes-VAE” approaches suffer from
a poor estimation of the posterior probabilities
wk(x) = P(W = k | x), and the “Similarity”
approach requires a temperature parameter, which
is infeasible to train due to a lack of annotated data.
Overall, this ablation study indicates the impor-
tance of learning the integration weights.

Sequential increase of detectors. In this abla-
tion study, we explore the integration of detectors

Method toxic severe obscene threat insult id-hate hate offensive

AID 0.92 0.99 0.95 0.97 0.96 0.97 0.90 0.93
Avg 0.76 0.85 0.80 0.80 0.79 0.78 0.67 0.70
Max 0.79 0.85 0.82 0.83 0.82 0.80 0.66 0.70
Similarity 0.75 0.84 0.79 0.79 0.79 0.76 0.65 0.71
Bayes-Input 0.51 0.63 0.51 0.70 0.52 0.76 0.57 0.76
Bayes-VAE 0.68 0.78 0.72 0.73 0.71 0.71 0.58 0.62

Table 4: Extended performance comparison incorporat-
ing data-free integration methods. The safety detection
task is defined by sentences drawn from tags indicated
by the column names.

toxic + severe + obscene + threat + insult + id-hate + hate + offensive

AID 0.70 0.90 0.95 0.91 0.91 0.95 0.95 0.92
Avg 0.70 0.73 0.80 0.74 0.73 0.81 0.81 0.71
Max 0.70 0.77 0.87 0.75 0.75 0.84 0.81 0.74

offensive + hate + id-hate + insult + threat + obscene + severe + toxic

AID 0.62 0.88 0.90 0.91 0.91 0.91 0.92 0.92
Avg 0.62 0.64 0.67 0.68 0.70 0.70 0.71 0.71
Max 0.62 0.66 0.71 0.70 0.73 0.73 0.74 0.74

Table 5: Ablation studies on various user-selected detec-
tors to integrate. Each row corresponds to a sequence
of expanding set of pretrained detectors, as indicated by
the column names.

in a sequential manner, as specified by users. The
safety detection task is defined by declaring the
sentences drawn from a mixture of 50% “toxic”
and 50% “offensive”. Our investigation involves
two sets of pretrained detectors, detailed in Ta-
ble 5, which are introduced incrementally. For
example, the first row examines the integration
starting with a single “toxic” detector, then pro-
gressively adding “severe” and other detectors in
sequence. The findings indicate that augmenting
the number of detectors typically enhances overall
performance. However, it is observed that the addi-
tion of certain detectors may marginally impact the
integration outcomes.

6 Conclusion
We introduced an AID approach to harness the col-
lective strengths of pretrained detectors to enhance
content safety detection. We theoretically eluci-
dated the adaptability of its Mixture-of-Experts
structure, and empirically demonstrated its effec-
tiveness through several detection tasks and input
distributions. However, we acknowledge the lim-
itations of our work. The efficacy of AID is con-
tingent upon the quality and diversity of the detec-
tors it incorporates. When domain-specific data
is scarce or lacks comprehensive representation,
AID’s ability to generalize across distinct domains,
such as identifying moral hazards in healthcare
or detecting money laundering in finance, may be
compromised. Addressing these challenges will be
a focus of our future research endeavors.

8

Impact Statements

This paper presents new approaches and insights
aimed at enhancing content moderation practices
within the realm of artificial intelligence. We ex-
pect our work will foster safer online environments,
reduce the spread of harmful content, and support
the development of more responsible AI. By ad-
vancing these content moderation practices, we
anticipate substantial benefits for community well-
being, user safety, and trust in digital platforms.
While we have carefully considered the potential
implications of our research, we believe that our
work does not present any specific negative impacts
that must be specifically highlighted here.

References
Raza Ali, Umar Farooq, Umair Arshad, Waseem

Shahzad, and Mirza Omer Beg. 2022. Hate speech
detection on twitter using transfer learning. Com-
puter Speech & Language, 74:101365.

Dor Bank, Noam Koenigstein, and Raja Giryes. 2023.
Autoencoders. Machine learning for data science
handbook: data mining and knowledge discovery
handbook, pages 353–374.

Arup Baruah, Kaushik Das, Ferdous Barbhuiya, and
Kuntal Dey. 2020. Aggression identification in en-
glish, hindi and bangla text using bert, roberta and
svm. In Proceedings of the second workshop on
trolling, aggression and cyberbullying, pages 76–82.

George Casella and Roger L Berger. 2021. Statistical
inference. Cengage Learning.

Tommaso Caselli, Valerio Basile, Jelena Mitrović, and
Michael Granitzer. 2020. Hatebert: Retraining bert
for abusive language detection in english. arXiv
preprint arXiv:2010.12472.

Zixiang Chen, Yihe Deng, Yue Wu, Quanquan Gu,
and Yuanzhi Li. 2022. Towards understanding the
mixture-of-experts layer in deep learning. Advances
in neural information processing systems, 35:23049–
23062.

Thomas Davidson, Dana Warmsley, Michael Macy, and
Ingmar Weber. 2017. Automated hate speech de-
tection and the problem of offensive language. In
Proceedings of the 11th International AAAI Confer-
ence on Web and Social Media, ICWSM ’17, pages
512–515.

Jie Ding, Vahid Tarokh, and Yuhong Yang. 2018. Model
selection techniques: An overview. IEEE Signal
Processing Magazine, 35(6):16–34.

Khalil Elkhalil, Ali Hasan, Jie Ding, Sina Farsiu, and
Vahid Tarokh. 2021. Fisher auto-encoders. In In-
ternational Conference on Artificial Intelligence and
Statistics, pages 352–360. PMLR.

Tom Fawcett. 2006. An introduction to roc analysis.
Pattern recognition letters, 27(8):861–874.

William Fedus, Jeff Dean, and Barret Zoph. 2022. A re-
view of sparse expert models in deep learning. arXiv
preprint arXiv:2209.01667.

Laura Hanu and Unitary team. 2020. Detoxify. Github.
https://github.com/unitaryai/detoxify.

Huggingface. 2023. Sentence transformer all-
minilm-l6-v2. In https://huggingface.co/sentence-
transformers/all-MiniLM-L6-v2.

Shashank Mohan Jain. 2022. Hugging face. In Intro-
duction to Transformers for NLP: With the Hugging
Face Library and Models to Solve Problems, pages
51–67. Springer.

Edwin T Jaynes. 2003. Probability theory: The logic of
science. Cambridge university press.

Jigsaw and Conversation-AI. 2018. Toxic
comment classification challenge. In
https://www.kaggle.com/competitions/jigsaw-
toxic-comment-classification-challenge/data.

Alyssa Lees, Vinh Q Tran, Yi Tay, Jeffrey Sorensen, Jai
Gupta, Donald Metzler, and Lucy Vasserman. 2022.
A new generation of perspective api: Efficient multi-
lingual character-level transformers. In Proceedings
of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 3197–3207.

Saeed Masoudnia and Reza Ebrahimpour. 2014. Mix-
ture of experts: a literature survey. Artificial Intelli-
gence Review, 42:275–293.

Jerzy Neyman and Egon Sharpe Pearson. 1933. Ix.
on the problem of the most efficient tests of statis-
tical hypotheses. Philosophical Transactions of the
Royal Society of London. Series A, Containing Papers
of a Mathematical or Physical Character, 231(694-
706):289–337.

Guansong Pang, Chunhua Shen, Longbing Cao, and
Anton Van Den Hengel. 2021. Deep learning for
anomaly detection: A review. ACM computing sur-
veys (CSUR), 54(2):1–38.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084.

Carlos Riquelme, Joan Puigcerver, Basil Mustafa,
Maxim Neumann, Rodolphe Jenatton, André Su-
sano Pinto, Daniel Keysers, and Neil Houlsby. 2021.
Scaling vision with sparse mixture of experts. Ad-
vances in Neural Information Processing Systems,
34:8583–8595.

Stephane Shao, Pierre E Jacob, Jie Ding, and Vahid
Tarokh. 2019. Bayesian model comparison with the
hyvärinen score: Computation and consistency. Jour-
nal of the American Statistical Association.

9

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff
Dean. 2017. Outrageously large neural networks:
The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538.

Chris Van Pelt and Alex Sorokin. 2012. Designing a
scalable crowdsourcing platform. In Proceedings of
the 2012 ACM SIGMOD International Conference
on Management of Data, pages 765–766.

Bertie Vidgen, Tristan Thrush, Zeerak Waseem, and
Douwe Kiela. 2020. Learning from the worst: Dy-
namically generated datasets to improve online hate
detection. arXiv preprint arXiv:2012.15761.

Yau-Shian Wang and Yingshan Chang. 2022. Toxicity
detection with generative prompt-based inference.
arXiv preprint arXiv:2205.12390.

Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski,

Mark Dredze, Sebastian Gehrmann, Prabhanjan Kam-
badur, David Rosenberg, and Gideon Mann. 2023.
Bloomberggpt: A large language model for finance.
arXiv preprint arXiv:2303.17564.

Suya Wu, Enmao Diao, Khalil Elkhalil, Jie Ding, and
Vahid Tarokh. 2022. Score-based hypothesis testing
for unnormalized models. IEEE Access, 10:71936–
71950.

Meijia Xu and Shuxian Liu. 2023. Rb bg mha: A
roberta-based model with bi-gru and multi-head at-
tention for chinese offensive language detection in
social media. Applied Sciences, 13(19):11000.

Weidi Xu, Haoze Sun, Chao Deng, and Ying Tan. 2017.
Variational autoencoder for semi-supervised text clas-
sification. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 31.

10

A Appendix: Experiments Related to Classifier-Based Detectors

Recall that our pretrained detectors were based on the BERT-VAE architecture. Specifically, for each
unsafe tag from each data source, e.g., “offensive” from HateOffensive, we trained a VAE that takes the
BERT embeddings of user-specific unsafe data as inputs. To use it for detection, we forward-pass a future
input sentence and obtain the negative log likelihood from the VAE output as the score–the larger, the
more likely to be safe. It is worth noting that the VAE-based pretrained detector does not require any safe
data for training.

To demonstrate the generalizability of the proposed approach, we curate another type of pretrained
detectors based on classification models. Specifically, we introduce a binary classifier based on a feed-
forward neural network with a hidden layer, which takes the average of the embeddings from the last
hidden state of BERT as input, and safe/unsafe label as output. Data are tokenized and padded using
BERT’s tokenizer to a maximum length of 512 tokens and the labels are balanced by randomly resampling.
To use it for detection, we forward-pass a future input sentence and obtain the prediction score associated
with the safety output, a value between 0 and 1–the larger, the more likely to be safe.

Classification-based pretrained detectors. We have run experiments on classification-based pretrained
detectors, summarized in Table 6 and Table 7. In these experiments, the pretrained detectors perform well
enough on most of the tasks that the gain brought by AID is incremental. Nevertheless, the performance
of AID is consistent as before.

Method toxic severe toxic obscene threat insult identity hate hate offensive

AID 0.96 1.00 0.98 0.99 0.98 0.99 0.88 0.91
Avg 0.96 1.00 0.98 0.98 0.98 0.99 0.87 0.9
Max 0.94 0.99 0.97 0.97 0.96 0.96 0.87 0.91
Similarity 0.96 1.00 0.98 0.98 0.98 0.98 0.88 0.91
Bayes-Input 0.94 0.99 0.96 0.97 0.97 0.98 0.88 0.89
Bayes-VAE 0.96 0.99 0.98 0.99 0.98 0.98 0.82 0.83

toxic-clf 0.96 1.00 0.98 0.98 0.98 0.99 0.84 0.83
severe toxic-clf 0.94 0.99 0.97 0.97 0.97 0.97 0.83 0.86
obscene-clf 0.96 1.00 0.98 0.97 0.98 0.99 0.84 0.86
threat-clf 0.93 0.99 0.95 0.99 0.96 0.96 0.81 0.83
insult-clf 0.96 1.00 0.98 0.97 0.98 0.99 0.84 0.84
identity hate-clf 0.94 0.99 0.96 0.97 0.96 0.99 0.84 0.83
hate-clf 0.91 0.98 0.94 0.94 0.95 0.97 0.9 0.89
offensive-clf 0.88 0.99 0.94 0.92 0.93 0.92 0.87 0.95

Table 6: Performance comparison of the AID approach that integrates classifier-based pretrained detectors, baseline
methods Avg and Max, and pretrained detectors, evaluated by ROC. The safety detection task is defined by declaring
the sentences drawn from a tag indicated by the column name.

Integration of heterogeneous detectors. We show the performance of combining a mixture of classifier-
based and VAE-based detectors. The results, as summarized in Table 8, show the AID performance is
stable even though the detectors’ output scores are of different scales.

B Appendix: Proofs of Technical Results

Proof 1 (Proof of Theorem 1) The Bayes estimate (Jaynes, 2003, Ch. 6), namely the one that minimizes
the mean square risk among all estimators, is given by the posterior mean

sBayes(x)
∆
= E{S | x}. (8)

Let 1W=k denote the indicator random variable for each k ∈ [K]. Then, we can rewrite S as

S =
∑
k∈[K]

1W=k · log pk(x)− log p0(x), (9)

11

Method toxic/offensive toxic/hate toxic/severe toxic obscene/threat

AID 0.9 0.91 0.98 0.98
Avg 0.91 0.9 0.98 0.98
Max 0.91 0.89 0.96 0.97
Similarity 0.91 0.91 0.98 0.98
Bayes-Input 0.90 0.90 0.96 0.96
Bayes-VAE 0.89 0.90 0.98 0.98

toxic-clf 0.89 0.9 0.98 0.98
severe toxic-clf 0.87 0.86 0.97 0.97
obscene-clf 0.9 0.9 0.97 0.98
threat-clf 0.87 0.87 0.97 0.97
insult-clf 0.9 0.9 0.97 0.98
identity hate-clf 0.85 0.86 0.97 0.96
hate-clf 0.89 0.9 0.96 0.94
offensive-clf 0.9 0.87 0.96 0.93

Table 7: Performance comparison of the AID approach that integrates classifer-based pretrained detectors, baseline
methods Avg and Max, and pretrained detectors, evaluated by ROC. The safety detection task is defined by declaring
the sentences drawn from a mixture of 50% tag A and 50% tag B indicated by the column name.

toxic-clf + offensive-clf toxic-vae + offensive-clf toxic-clf + offensive-vae toxic-clf + hate-vae toxic-vae + hate-clf

AID 0.94 0.92 0.9 0.91 0.92
Avg 0.92 0.7 0.62 0.66 0.71
Max 0.91 0.91 0.9 0.89 0.89

offensive-vae offensive-clf toxic-vae toxic-clf hate-vae hate-clf

0.62 0.91 0.7 0.89 0.64 0.65

Table 8: Performance comparison of the AID approach that integrates both classifer-based and VAE-based pretrained
detectors, and baseline methods Avg and Max, evaluated by ROC. The first table summarizes the performance of
integrating five user-selected pairs of detectors, and the second table summarizes the performance of pretrained
detectors. The underlying safety task is defined based on a half-half mixture of “toxic” and “offensive” tags as from
their respective data source.

and its posterior mean conditional on x is

sBayes(x) = E{S | x}

= E
{ ∑

k∈[K]

1W=k · log pk(x)− log p0(x) | x
}

=
∑
k∈[K]

E{1W=k | x} · log pk(x)− log p0(x)

=
∑
k∈[K]

P{W = k | x} · log pk(x)− log p0(x). (10)

By Bayes’ Theorem, we have

P{W = k | x} =
P{W = k}pi(x)∑

j∈[K] P{W = j}pj(x)

=
wkpk(x)∑

j∈[K]wjpj(x)
. (11)

Taking Equation (11) to (10), we conclude the proof of Theorem 1.

12

Proof 2 (Proof of Theorem 2) Based on the Gaussian assumptions of p0, p1, p2, we have

sAvg(x) = −
2∑

k=1

1

4
(x− µi)

2 +
1

2
x2 = (µ1 + µ2)x/2 + c (12)

where c
∆
= −(µ2

1 + µ2
2)/4 is a constant that does not depend on x. Thus, the detection rule associated

with the score function sAvg is to identify the input as unsafe if (µ1 + µ2)x/2 > η. Recall that the false
alarm rate and detection power are respectively defined as

αAvg(η) = P{(µ1 + µ2)x/2 > η | x ∼ p0}, (13)

βAvg(η) = P{(µ1 + µ2)x/2 > η | x ∼ p1}. (14)

Let ϕ : R → R denote the cumulative distribution function of a standard Gaussian distribution. Then,
under our setup of p0 and p1, and the assumption µ1 + µ2 > 0, we can rewrite

αAvg(η) = ϕ

(
− 2η

µ1 + µ2

)
, (15)

βAvg(η) = ϕ

(
− 2η

µ1 + µ2
+ µ1

)
. (16)

Thus, for µ1 < 0, we have αAvg > βAvg regardless of the values of η. Therefore, the AUC is no larger than
0.5.

On the other hand, the data-adaptive score can be written as

sBayes(x) = (w1(x)µ1 + w2(x)µ2)x− 1

2
(w1(x)µ

2
1 + w2(x)µ

2
2) (17)

where the data-adaptive weights can be calculated as

where w1(x)
∆
=

p1(x)/2∑
j∈[2] pj(x)/2

=
p1

p1(x) + p2(x)
=

1

1 + exp{(µ2 − µ1)(x− (µ1 + µ2)/2)}
,

w2(x) = 1− w1(x).

In this case, the detection rule is to identify the input as unsafe if (w1(x)µ1 +w2(x)µ2)x− 1
2(w1(x)µ

2
1 +

w2(x)µ
2
2) > η for any threshold η. Let A1 denote the event that x is no larger than 0, which indicates that

x− (µ1 + µ2)/2 ≤ −(µ1 + µ2)/2 < 0, (18)

w1(x) ≥
1

1 + exp{−(µ2
2 − µ2

1)/2}
. (19)

For an arbitrarily small δ > 0 such that

(1− δ)µ1 + δµ2 < 0, (20)

Inequality (19) implies that we have w1(x) ≥ 1− δ for all sufficiently large µ2
2 − µ2

1. Note that if µ2 + µ1

13

goes to infinity, so does µ2
2 − µ2

1. Then, the detection power can be lower bounded by

βBayes(η)
∆
= P

{
(w1(x)µ1 + w2(x)µ2)x >

1

2
(w1(x)µ

2
1 + w2(x)µ

2
2) + η | x ∼ p1

}
(21)

≥ P
{
(w1(x)µ1 + w2(x)µ2)x >

1

2
(w1(x)µ

2
1 + w2(x)µ

2
2) + η, A1 | x ∼ p1

}
+ P

{
A1 | x ∼ p1

}
− 1 (22)

≥ P
{
((1− δ)µ1 + δµ2)x >

1

2
(1− δ)µ2

1 + δµ2
2 + η, A1 | x ∼ p1

}
+ ϕ(−µ1)− 1 (23)

= P
{
x− µ1 <

1
2((1− δ)µ2

1 + δµ2
2) + η

(1− δ)µ1 + δµ2
− µ1, A1 | x ∼ p1

}
+ ϕ(−µ1)− 1 (24)

= ϕ

(1
2((1− δ)µ2

1 + δµ2
2) + η

(1− δ)µ1 + δµ2
− µ1

)
+ ϕ(−µ1)− 1 (25)

≤ ϕ

(
−1

2
µ1 +

η

µ1

)
+ ϕ(−µ1)− 1. (26)

Likewise, let A2 denote the event that x is no larger than (µ1 + µ2)/4, which indicates that

x− (µ1 + µ2)/2 ≤ −(µ1 + µ2)/4 < 0, (27)

w1(x) ≥
1

1 + exp{−(µ2
2 − µ2

1)/4}
. (28)

For any arbitrarily small δ > 0, Inequality (28) implies that we have w1(x) ≥ 1− δ for µ2
2 − µ2

1 larger
than c log(δ) for some constant c. The false alarm rate can be upper bounded by

αBayes(η)
∆
= P

{
(w1(x)µ1 + w2(x)µ2)x >

1

2
(w1(x)µ

2
1 + w2(x)µ

2
2) + η | x ∼ p0

}
(29)

≤ P
{
(w1(x)µ1 + w2(x)µ2)x >

1

2
(w1(x)µ

2
1 + w2(x)µ

2
2) + η, A2 | x ∼ p0

}
+ 1− P

{
A2 | x ∼ p0

}
(30)

≤ P
{
µ2x+ δ

µ2
2 − µ2

1

4
>

1

2
µ2
1 + η, A2 | x ∼ p0

}
+ 1− ϕ

(
µ1 + µ2

4

)
(31)

≤ P
{
µ2x+ δ

µ2
2 − µ2

1

4
>

1

2
µ2
1 + η | x ∼ p0

}
+ 1− ϕ

(
µ1 + µ2

4

)
(32)

≤ P
{
x >

µ2
1

2µ2
− δ

µ2
2 − µ2

1

4µ2
+

η

µ2
| x ∼ p0

}
+ 1− ϕ

(
µ1 + µ2

4

)
(33)

= ϕ

(
− µ2

1

2µ2
− η

µ2
+ δ

µ2
1 − µ2

2

4µ2

)
+ 1− ϕ

(
µ1 + µ2

4

)
. (34)

Recall that the AUC is defined as the area under the curve formed by (αBayes(η), βBayes(η)) sweeping
η ∈ (−∞,∞). We let U be a uniform random variable that equals the first term on the right-hand side of
Inequality (34). This induces a random variable η defined by

η = −µ2 ·
(
ϕ−1(U) +

µ2
1

2µ2
− δ

µ2
1 − µ2

2

4µ2

)
, (35)

where Z
∆
= ϕ−1(U) follows the standard Gaussian by the definition of ϕ. Recall that the AUC can be

equivalently written as E{βBayes(η)} where the expectation is over a uniformly distributed αBayes(η). Also,
1− ϕ((µ1 + µ2)/4) converges to one as µ1 + µ2 goes to infinity. Thus, using Inequalities (26) and (34),

14

we obtain

AUC = E{βBayes(η)} ≥ Eϕ
(
−1

2
µ1 +

η

µ1

)
+ ϕ(−µ1)− 1 + o(1) (36)

= Eϕ
(
−µ1 + δ

µ2
1 − µ2

2

4µ1
− µ2

µ1
Z

)
+ ϕ(−µ1)− 1 + o(1), (37)

where o(1) is a small term in the asymptotic regime. From Equation (37), the derivation that δ(µ2
2 − µ2

1)
can converge to zero, and the assumption that |µ2/µ1| is bounded, we conclude that the AUC converges
to one as −µ1 goes to infinity.

15

	Introduction
	Related Work
	Problem Formulation
	Adaptive Integration of Detectors (AID)
	Description of AID
	Why Using Linear Aggregations
	Why Data-Adaptive Weights
	Data-Free Alternatives to AID

	Experimental Study
	Experimental Setups
	User-Specified Safety Detection Tasks
	Sparse AID and Computational Analysis
	Ablation Studies

	Conclusion
	Appendix: Experiments Related to Classifier-Based Detectors
	Appendix: Proofs of Technical Results

