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Abstract
Personalized FL has been widely used to cater
to heterogeneity challenges with non-IID data.
A primary obstacle is considering the personal-
ization process from the client’s perspective to
preserve their autonomy. Allowing the clients to
participate in personalized FL decisions becomes
significant due to privacy and security concerns,
where the clients may not be at liberty to share
private information necessary for producing good
quality personalized models. Moreover, clients
with high-quality data and resources are reluctant
to participate in the FL process without reason-
able incentive. In this paper, we propose PI-FL, a
one-shot personalization solution complemented
by a token-based incentive mechanism that re-
wards personalized training. PI-FL outperforms
other state-of-the-art approaches and can generate
good-quality personalized models while respect-
ing clients’ privacy.

1. Introduction
Training high-quality models using traditional distributed
machine learning requires massive data transfer from the
data sources to a central location. This data transfer raises
various communication, computation, and privacy chal-
lenges. To this end, Federated Learning (FL) (McMahan
et al., 2016) has emerged as a solution to train models at
source, which reduces privacy issues and also fulfills the
need to create high-quality models. However, the success
of FL lies in resolving various new challenges related to
heterogeneity, scheduling, and privacy.

Despite its success, FL faces challenges due to the non-IID
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(non-independently and identically distributed) nature of
data. For FL applications, the real-world user data is likely
to follow a mixture of multiple distributions (MARFOQ
et al., 2021; Ruan & Joe-Wong, 2022). Several research
works have focused on training personalized models to over-
come data heterogeneity challenges. Instead of training
one global model with highly heterogeneous data from all
the clients or locally training independent models on each
client’s data, training the personalized models is more suit-
able for independently serving certain clients or groups of
clients.

Among personalization research, similarity-based ap-
proaches that use clustering of clients at the aggregator
(Mansour et al., 2020; Duan et al., 2021; Ruan & Joe-Wong,
2022; Tang et al., 2022) have gained popularity. These
works of clustering-based personalization control client se-
lection and training from the aggregator that has limited
knowledge of clients’ individual goals or training capacity.
This takes away clients’ autonomy to make decisions them-
selves if they want to bear the cost of training and can also
create personalized models that are not aligned with clients’
goals. So it is necessary to reconsider which entity should
make the decisions of creating clusters while preserving
the autonomy of participating clients.

Existing personalization solutions fulfill the primary goal
of overcoming data heterogeneity for specific cases. Never-
theless, they still open the question of how to attract clients
to share good quality updates without any reward (Deng
et al., 2021; Han et al., 2022; Hu et al., 2022). Training
involves computation, communication, as well as privacy
costs, and it would be naive to assume that each client would
be willing to spend their resources without any measure of
benefit being received, which is why clients need to be
incentivized to join in training and maximize their profits
according to their contributions.

The two challenges of personalizing and incentivizing in FL
have always been considered separate problems and dealt
with individually. For the practicality of FL, it is logical to
create an algorithm design that can cater to both challenges
simultaneously. This requires an incentive algorithm that
complements personalization in a way that clients are mo-
tivated through incentives to produce high-quality personal-
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ized models.

To overcome the first challenge of client autonomy, we pro-
pose tiering-based personalization according to each client’s
preferences. In our work, tier-level models serve as cen-
ters and are trained on clients corresponding to that tier.
Clients first estimate the importance weights of each tier-
level model on their local data. Then guided by the im-
portance weights, clients send their preferences for joining
tiers to the aggregator in the form of bids. The aggregator
forms tiers for personalized training considering the clients’
bids and their performance history for each tier. To attain
personalized models for each client, we do one-shot per-
sonalization using tier-level models. It allows independent
clients to generate personalize models aligning with the
goals that are not directly reflected by their training data and
are unknown to the aggregator. This is beneficial, particu-
larly in scenarios where clients may want to use selective
data for training while keeping some data private for their
personal use due to several reasons such as confidential-
ity, competitive advantage, data governance, resource
limitations, data anonymization or compliance with pri-
vacy laws (GDPR (Regulation, 2018), HIPA (Act, 1996))
(Kairouz et al., 2019; Li et al., 2020a). This is also helpful
in scenarios where clients may deal with a distribution drift
in their data at rapid rates with new incoming data (Liu et al.,
2019). With PI-FL, individual clients can attain a personal-
ized model for their new or private data at low computation
cost with one-shot personalization.

To resolve the second challenge of incentivizing clients, we
propose a token-based incentive scheme as in (Han et al.,
2022) that considers each client to have both provider and
consumer profiles. As a consumer, the client takes advan-
tage of the final trained personalized model, so it pays the
provider to spend resources to train said model in each
round. As a provider, the client earns a profit based on its
contribution to training the model. The marginal contribu-
tions are calculated via a utility function based on Shapley
Values (Shi et al., 2022). Our incentive scheme will reward
providers’ participation and contribution of good quality
data for training and penalize providers for a contribution
reduction.

Lastly, to conjoin personalized and incentivized FL, our
incentive algorithm rewards clients on joining tiers where
they can provide the most utility. The incentive for each
provider’s participation is calculated per tier. If the client
enters a tier more similar to its data distribution, it will con-
tribute more to the tier-level model and earn greater profit.
In this way, the incentive scheme directly motivates clients
to train good quality personalized models and provides re-
wards accordingly.

Our contributions are: 1© We present PI-FL, an incentive
scheme that complements and rewards personalized learn-

ing. 2© PI-FL provides autonomy to clients for personalized
FL and uses the client’s preferences for joining tiers. 3© To
attain personalized models that align with the client’s goals,
PI-FL uses a one-shot personalization model that enables
clients to create personalized models on new or private data
without any chance of data leakage or privacy concerns.

2. Related Work
Personalized FL: FedSoft (Ruan & Joe-Wong, 2022) and
(Tang et al., 2021) are probably the closest to our work. Fed-
Soft (Ruan & Joe-Wong, 2022) utilizes soft clustering on
the basis of matching data distributions in clients with clus-
ter models. (Tang et al., 2021) and Ditto (Li et al., 2020b)
find the optimal personalization-generalization trade-off by
solving a bi-level optimization problem. This work incurs
clustering overhead at each iteration and does not consider
the overlap of distribution between clients wherein each
client is restricted to one cluster for each training round.
FedGroup (Duan et al., 2021) quantifies the similarities
between clients’ gradients by calculating the Euclidean dis-
tance of decomposed cosine similarity metric. (Mansour
et al., 2020) proposes three approaches for personalization
using clustering, data interpolation, and model interpolation.
Iterative Federated Clustering Algorithm. IFCA (Ghosh
et al., 2020) proposes a framework for the clustering of
clients based on the loss values of the gradients. Some
other works also propose personalized FL without cluster-
ing (Fallah et al., 2020; Kulkarni et al., 2020; Tan et al.,
2021; Collins et al., 2021). All of these works lack in pro-
viding autonomy to clients in the personalized FL process,
they also lack mechanisms to attract good quality clients for
participating in the FL process.

Incentivized FL: FAIR (Deng et al., 2021) integrates qual-
ity a quality-aware incentive mechanism with model aggre-
gation to improve global model quality and encourage the
participation of high-quality learning clients. FedFAIM
(Shi et al., 2022) proposes a fairness-based incentive mecha-
nism to prevent free-riding and reward fairness with Shapley
value-based client contribution calculation. (Zhang et al.,
2021) proposes an approach based on reputation and reverse
auction theory which selects and rewards participants by
combining the reputation and bids of the participants under
a limited budget. (Hu et al., 2022) proposes an approach
where clients decide whether to participate based on their
own utilities (reward minus cost) modeled as a minority
game with incomplete information. Other incentivized FL
works include (Zeng et al., 2020; Tang & Wong, 2021; Sun
et al., 2021; Gao et al., 2021; Ng et al., 2022). All of these
works propose standalone solutions to attract clients, how-
ever, they cannot be used as effective solutions to counter
the heterogeneity of data in FL to produce good-quality
models for individual clients.
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In our framework, we use clustering for personalized FL
wherein the clusters memberships are changed after every
R training rounds. Our work is different from these as we
form clear boundaries between multiple cluster models and
improve shared learning between cluster similarities through
multiple participation at the client level. Our framework
also incorporates autonomous client participation with an
incentive mechanism that directly motivates personalized
training on the basis of Individual Rationality (IR) constraint
in game theory. We also provide improved performance in
terms of accuracy for personalized and tier-level models.

3. Design

Algorithm 1 PI-FL (Client)
Input: Th: Importance weight threshold, K: Number of

tiers, Mk: Tier-level model of tier k ∈ K, D: Local
dataset of client,

1 Function ClientPreferences(Mk)
2 for each tier k ∈ K do
3 for each data point d ∈ D do
4 The client computes υk importance weight of

Mk model for each data point d via Eqn. 3
5 if υk > Th then
6 Client adds tier k to client’s preference bids list

θ∗i

7 The client generates personalized model Pck via Eqn. 4
8 return θ∗i

In this section, we describe the design of PI-FL which com-
bines personalization with incentivization using tokens. The
idea is to create a democratic incentive system in which all
entities benefit proportional to the service they provide and
incentivizes personalized training by clients.

For personalization, PI-FL uses a tiering-based approach in
which all participating clients within a tier train a tier-level
global model. The tier-level global model serves the mutual
goals of clients belonging to that tier. Unlike prior works in
cluster-based personalization (Duan et al., 2021; Tang et al.,
2021; Ruan & Joe-Wong, 2022) in which clients do not have
the freedom of choice for joining a particular cluster/tier, we
provide autonomy to clients to join tiers in which they can
maximize their contributions and, in turn, maximize their
rewards.

We assume that each client will look to maximize their
profits according to the principle of Individual Rationality
(IR) (Kairouz et al., 2019; Li et al., 2020a) and this will lead
them to choose tiers in which they can contribute the most
for maximum reward.

The aggregator includes three main modules, the profiler,

Algorithm 2 Estimated Shapley value of any client in an
FL
Input: Test data (xi, yi), i = 1, . . . , ntest, clients’ local model

parameters and aggregation weights, Wm, λm. server’s aggre-
gated model parameter WM =

∑M
m=1 λmWm.

1: Calculate γM
∆
= n−1

test
∑ntest

i=1∇W `(xi, yi;WM )
2: for k = 1, . . . ,M do
3: Calculate SHAP(i→ [M ]) using

−
(

1

ntest

ntest∑
i=1

∇W `(xi, yi;WM )

)T

λiWi (1)

for unnormalized aggregation, or

−
(

1

ntest

ntest∑
i=1

∇W `(xi, yi;WM )

)T

λi(Wi −WM ) (2)

for normalized aggregation.
4: end for

Output: Obtains all clients’ Shapley values

the token manager, and the scheduler.

3.1. Profiler

When the FL process starts, the scheduler module forms the
initial tiers by randomly assigning clients. Then for each
round, the clients train on the tier-level model corresponding
to their tier on the client’s local data. After training, these
tier-level models are sent to the aggregator for tier-level
aggregation. The aggregator aggregates the tier-level models
and sends them to the clients.

υck = nck/nk ∈ [0, 1] (3)

The clients calculate the importance weight of each tier-
level model on their local dataset as given in Equation 3.
Here υck is the normalized sum of correctly predicted data
points nck on local dataset Dc of client c with tier-level
model Mk where k ∈ K. The importance weights are
used to generate a one-shot personalized model through the
weighted aggregation of tier-level models using Equation 4.

Pck =

K∑
k=1

υck × (ωk) (4)

Here the Pck is the personalized model of client c in tier k
and ωk is the weight vector of k tier-level model. Using this,
clients generate good quality one-shot personalized models
offline without the need to share their private data.

This resolves challenges related to the autonomy and pri-
vacy of clients mentioned in Section 1. The client also
uses the generated importance weights and knowledge of
received rewards from the previous rounds to make an in-
formed preference decision of joining the next tier for train-
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Algorithm 3 PI-FL (Server)
Input: R: Rounds, Pr: Pre-training rounds, K: Num-

ber of tiers, Mk: Tier-level model of tier k ∈ K,
MG: Global model at aggregator, N : Number of
clients, C: Number of classes in dataset, ζa: Avail-
able Clients, Np: Number of clients to select on
basis of performance, Nr: Number of clients to se-
lect randomly for each tier, ζk: Clients selected for
training in tier k ∈ K, FedAvg: (McMahan et al.,
2016), F1-Scores: (F1-scores), sort(): Python 3.7
Timsort implementation (Python)

9 for each round r ∈ R do
10 ζk = SelectClients(r) for each tier k ∈ K
11 for tier k ∈ K do
12 Server sends tier-level model Mk for training to

clients in ζk
13 Token Manager collects bid payments from all will-

ing clients via Eqn. 6
14 Token manager updates available tokens for round

r via Eqn. 7
15 Uk ← model updates received from clients in ζk
16 Mk = FedAvg(Uk)

17 Function SelectClients(r)
18 if r = 0 then
19 for k = 1 to K do
20 ζ∗k ← Scheduler randomly assigns clients from

ζa.
21 return ζ∗k
22 else if r > 1 then
23 for i = 1 to N do
24 θi ← ClientPreferences(Mk) | ∀k ∈ [1,K]

// from algorithm 1
25 Server calculates marginal contributions ψki of

each client within its tier on basis of Shapley
Values via algorithm 2 | ∀k ∈ [1,K],∀i ∈
[1, N ]

26 //Profiler sorts clients on the basis of their
marginal contributions and preference bids

27 Sc = sort(θi, ψki)
28 for k = 1 to K do
29 ζ∗k ← Np clients selected from Sc and Nr

clients randomly from ζa by Scheduler.

30 return ζ∗k

ing. It informs the aggregator of its preference by submitting
a bid for the tier it wishes to participate in the next training
round. This is also shown in Algorithm 1.

To aid in scheduling, the profiler calculates the marginal
contributions of each client after every round. The marginal
contributions are measured using Shapley Values as shown
in Algorithm 2. Shapley Values indicate the data quality of
each client and its contribution to the aggregated tier-level
global model. This data quality information is sent to the
scheduler for scheduling clients in the next training rounds.
The calculation of Shapley Values for multiple clients is
computationally expensive so we use the approximation
function derived in section A.

PI-FL also includes an option to facilitate clients to form
well-defined initial tiers. So the clients can avoid the
decision-making process in the beginning and streamline
their spending when the client contributions and tier distri-
butions are unclear. For this, the profiler and the scheduler
module facilitate forming the initial tiers by training for
some pre-training rounds. This is done as client contribu-
tions and similarity metrics that the clients use among other
metrics to make decisions about joining tiers are initially un-
known. After pre-training, the profiler calculates per-class
F1-Scores ξ of all client local models on an IID test dataset
(F1-scores). Then the profiler with the help of scheduler
tiers clients for the next training round using the K-Means
clustering (K-Means) algorithm with the ρ most varying
F1-scores from C total classes. The Equation 5 shows the
calculation of ρ where C is the number of total classes and
N is the number of all available clients.

ρ = var(ξi) ∈ [1, C] | ∀i ∈ N (5)

We perform all our evaluations for PI-FL without this fea-
ture, but this is an added feature that PI-FL includes for
faster convergence and to save clients’ costs. We also re-
alize the constraints in choosing all the clients for training,
which is why clients that reply within threshold time in
pre-training rounds are used to calculate F1 scores. The
remaining clients are considered unexplored and assigned
to tiers randomly, they can later settle into appropriate tiers
through preference and contributions selection.

3.2. Token Manager

The token manager acts as a bank to orchestrate and keep
track of transactions between different clients. At the start of
each training round the token manager holds an auction for
each tier, and the clients that want to participate in that tier
place their bids using tokens. The token manager forwards
the list of willing clients to the scheduler to select clients
for training. It also deducts payments from the willing
clients/consumers as shown in Equation 6. Here τi is the
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tokens owned by client i, and ζk are the clients willing to
participate in the training of tier k. The term τp in this and
the following Equations is the bid amount for a round to be
paid by each client.

τi = τi − τp | i ∈ ζ∗k (6)

The tokens collected as payments from clients/consumers
are then added to the available pool of tokens at the Token
Manager as shown in Equation 7. Here τar are the total
available pool of tokens at the Token Manager. The termNp

is the number of clients selected on basis of performance
and Nr is the number of clients selected randomly. The
significance of using Np and Nr is explained in section 3.3

τar = τar + (Np+Nr)× τp | r ∈ [1, R] (7)

The token manager also distributes the reimbursement and
incentive rewards for each provider/client. Reimbursement
is used as a measure to penalize the bad performance of
providers/clients. Reimbursement depends on the utility
function which is calculated as the percentage of average
accuracy improvement of the tier-level modelMk compared
to the maximum achieved accuracy in past rounds on the
local datasets of clients in tier k. The utility function is
given in Equation 8 and reimbursement calculation is given
in Equations 9 and 11, both metrics are calculated at the
profiler which assists the token manager in reimbursement.

δutil = max(0.0,
(Acckr −Acckmax)

Acckmax
) (8)

θ =
η × (γ −min(γ, δutil))

γ
| η ∈ [0, 1], γ ∈ [0, 1] (9)

Rt = τar × θ | θ ∈ [0, γ] (10)

τi = τi − τar × θ | θ ∈ [0, γ] (11)

∀i ∈ [1, N ],∀r ∈ [1, R]

In Equation 8, Acckr is the tier-level model accuracy in
the current round r and Acckmax is the maximum tier-level
model accuracy achieved until the current round r. The
term η in Equation 9 represents the maximum portion of
tokens that can be returned and γ represents the maximum
accuracy improvement that leads to the use of one full token.
In Equation 11, τar are the total number of tokens collected
from consumers/clients for r training round. We have used a
similar approach to (Han et al., 2022), however, they use the
accuracy of the FedAvg model on an IID dataset. It is not
practical to assume the presence of an IID dataset that can
correspond to the data distribution of clients within a tier

which is why we rely on the local dataset of clients within
that tier to gather this information.

α = sort(ψki,Ωki) (12)

β = Nr ×
(Nr + 1)

2
(13)

τi = τi + α× τar
β

(14)

∀k ∈ [K],∀i ∈ [N ],∀r ∈ [R]

After reimbursement, if there are any tokens left to distribute
the token manager uses the marginal contributions calcu-
lated by the profiler and sorts providers/clients by their con-
tributions and participation record in Equation 12. Here ψki

represents the marginal contributions and Ωki represents the
participation records of all clients N in K tiers. The term β
is a normalizing term from Equation 13 in which Nr are the
number of providers selected for participation in round r.
Using the ranks α of providers from sorting and the normal-
ization term β, the available tokens are distributed between
these providers in Equation 14. In Equation 14, τi repre-
sents the tokens owned by provider/client i and τar are the
tokens available for incentive distribution at the token man-
ager. Through reimbursements to consumers and payments
to providers, the Token Manager ensures that each client
receives an incentive according to their contributions.

3.3. Scheduler

The scheduler selects clients for each round r by the
SelectClients(r) function given in Algorithm 3. The
scheduler receives the preference bids θi from the token
manager, the marginal contributions ψki from the profiler
for each client i ∈ N in tier k ∈ K, where N is the total
number of clients and K are the total number of tiers. Using
this information scheduler groups clients with similar pref-
erence bids and then sorts those clients by their marginal
contributions. Then the scheduler selects Np number of
clients from the sorted clients and Nr number of clients ran-
domly. Both Np and Nr are tunable parameters. To reduce
bias, a small portion of clients Nr are selected randomly
which is a technique adopted from previous works (McMa-
han et al., 2016; Bonawitz et al., 2019; Han et al., 2022;
Khan et al., 2022). By grouping clients with similar pref-
erences the scheduler preserves the autonomy of clients
mentioned in Section 1 and at the same time it actively pri-
oritizes clients with better data qualities for training in each
tier by using their marginal contributions as an indicator of
performance.

Thus, PI-FL conjoins incentive and personalized learn-
ing by providing contribution-based incentives and doing
client selection on the basis of contributions and preference
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bids to encourage clients in joining tiers where they can
contribute the most.

4. Experimental Studies
4.1. Experimental Setup

We use Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz
instances with 64 cores and NVIDIA GeForce RTX 3070
GPUs for all our experiments. To evaluate the performance
of PI-FL we use the CIFAR-10 dataset along with a Syn-
thetic dataset provided in the FedSoft (Ruan & Joe-Wong,
2022) repository. To evaluate PI-FL and related work, we
use a simple CNN model that can be trained on client de-
vices with limited system resources to map Cross-Device FL
settings (Kairouz et al., 2019). The CNN model has three
convolutional layers whose channel sizes are sequentially
32, 64, 64, and two linear layers of sizes 3136 and 128. Our
empirical results on these datasets suggest that PI-FL is a
promising approach for meeting the practical demands of
personalized FL with incentives for Cross-Device FL.

Synthetic Data. We use the same synthetic dataset pro-
vided by the FedSoft (Ruan & Joe-Wong, 2022) repository
for comparison with our work. The FL system has a total
of N = 100 clients. We use this dataset to demonstrate less
heterogeneous and simplistic cases where the data is divided
into only 2 distributions DA and DB . This experimental
setup is duplicated from FedSoft for a fair comparison. We
test on different ratio mixtures of DA and DB such as 10:90
and 30:70. In the 10:90 partition, 50 clients have 90% train-
ing data from DA and 10% from DB , while the other 50
have 10% training data from DA and 90% from DB . In the
30:70 partition, 50 clients have 70% training data from DA

and 30% from DB , while the other 50 have 30% training
data from DA and 70% from DB .

CIFAR10. This image dataset has images of dimension 32
× 32 × 3 and 10 output classes. Same as the synthetic dataset
we test on different ratio mixtures of DA and DB . The only
difference is that in 10:90 50 clients have 90% training
data with 10% testing data from DA and 10% training data
with 90% testing data from DB and vice versa. In 30:70
partition, 50 clients have 70% training data with 30% testing
data from DA and 30% training data with 70% testing data
from DB and vice versa. In the linear partition, client k has
(0.5+k)% training data from DA and (99.5−k)% training
data from DB , and the testing data is (99.5−k)% from DA

and (0.5 + k)% from DB , k = 0, · · · , 99. In the random
partition, client k has a random mixture vector generated by
dividing the [0, 1] range into S segments with S − 1 points
drawn from Uniform(0, 1). The testing dataset has the
same portion of testing data from the opposite distribution
of the training dataset. As in all previous partitions.

In short, unlike the Synthetic dataset, where clients have the

same training and testing dataset distributions the training
and testing distributions of all CIFAR10 dataset partitions
are inverse. We use this dataset to test PI-FL where the
aggregator is unaware of the client’s dataset distribution and
goals. The reason for preserving the client’s privacy from
the FL system is explained in more detail in sections 1 and
4.2. We also use this dataset to analyze linear and random
partitions where the number of partitions in the distributions
is increased to 100 instead of 2 as in 10:90 and 30:70.

EMNIST. This image dataset has images of dimension 28
x 28 and 52 output classes where 26 classes are lower case
letters and 26 classes are upper case letters. We test the
dataset on different partitions of 10:90, 30:70, linear and
random created in the same way as the CIFAR10 data. The
only difference being that DA contains 26 lower case letters
and DB has 26 upper case letters.

4.2. Focus of Experimental Study

We use different training and testing data distributions to
demonstrate PI-FL’s ability to personalize in case of dif-
ferent goals of clients, which will not be visible to the ag-
gregator server. As previously mentioned in section 1, the
difference can arise due to multiple reasons, such as a drift in
the client’s distribution of data with time or even for privacy
and security reasons where the client may not be willing
to share a portion of their private data at all with the server
and keep it limited to personal use only. In such scenar-
ios, producing quality personalized models and managing
incentives becomes a non-trivial task.

Since we expect that initially tier-level models will be de-
ployed to new users, we analyze their test accuracy on hold-
out datasets sampled from the corresponding tier distribu-
tions (DA and DB). We also calculate the personalized
model test accuracy for each client on the client’s local test
data to get a measure of the quality of personalized models
on the client side.

4.3. Personalization experimental study

Table 1. Test accuracy for PI-FL and FedSoft on Synthetic
Dataset

PI-FL FedSoft
10:90 30:70 10:90 30:70

c0 c1 c0 c1 c0 c1 c0 c1
θ0 63.68% 41.26% 58.02% 57.71% 48.90% 49.50% 47.99% 48.36%

θ1 43.71% 63.82% 58.58% 58.47% 50.70% 49.60% 49.99% 50.04%

4.3.1. Results on Synthetic data.

For Synthetic Data, we use the learning rate η = 0.01, batch
size = 128 and perform training for 300 rounds with both
PI-FL and FedSoft. For testing this setting to compare with
FedSoft, we use the same testbed as in the original paper.
These experiments will showcase the performance of PI-FL
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in comparison with other works in different heterogeneous
settings with augmented data.

Table 2. Test accuracy for PI-FL on CIFAR10 Dataset
10:90 30:70 linear random

c0 c1 c0 c1 c0 c1 c0 c1
θ0 62.78% 2.56% 53.28% 34.32% 61.66% 12.08% 66.9% 19.48%

θ1 1.5% 70.96% 30.38% 61.94% 30.94% 59.44% 19.12% 58.42%

Table 1 shows the test accuracy for the 10:90 and 30:70
partitions with PI-FL. Here θ0 represents the distribution
DA and θ1 represents the distribution DB . The tiers are
represented with c along with the tier number. We see that
PI-FL performs better for the 10:90 partition where each
tier is able to dominate one of the distributions.

The accuracies under the 10:90 partition show that clients
that have a greater portion of data from θ0 prefer to train
in tier c0 whereas clients that have a greater portion of
data from θ1 prefer to train in tier c1. The tier c0 achieves
63.68% accuracy while c1 has an accuracy of 63.82%. As
expected and showcased in previous works (Ruan & Joe-
Wong, 2022) the performance for 30:70 is not as good as it
is a less heterogeneous partition than 10:90 which is why
neither tier dominates a single distribution.

Compared to PI-FL, FedSoft tier-level models accuracies
for the 10:90 partition are 50.8% and 49.3%. It is worth
noting that FedSoft is unable to cater to different partitions
of data through its clustering mechanism and the perfor-
mance gets adversely impacted by increased heterogeneity.
Furthermore, Table 1 highlights that tier-level models in
FedSoft are unable to dominate a single distribution of data.

For the 30:70 partition with FedSoft, both tier-level models
c0 and c1 perform well on θ1 which means that the clients
with different distributions are not being clearly differenti-
ated for training with different tiers. Another thing to note
here is that the tier-level models c0 and c1 have similar per-
formance with either distribution (θ0 and θ1), this is because
FedSoft promotes personalizing models when clients have a
greater percentage of shared data. This generates tier-level
models that are unable to represent a single distribution and
do not perform as well as PI-FL with non-IID data.

Figure 1 shows the empirical Cumulative Distribution Func-
tion (CDF) plot of personalized accuracies for all clients
with the Synthetic data. The average personalized accuracy
for the 10:90 and 30:70 partitions are 45.9% and 54.9%
respectively. Compared to this, FedSoft achieves 44.75%
and 43.69% respectively. An important thing to note here
is that in the Synthetic data, the distribution of training and
testing data is the same. So the aggregator can use the train-
ing data performance as an indicator of the client’s goals
for generating personalized models. However, as we see
in Figure 1, PI-FL is able to generate personalized models
with increased test accuracy than FedSoft regardless of the

aggregator’s scope of knowledge. This is made possible by
the autonomy that PI-FL provides to clients to join tiers of
their own choice which creates accurate tiers and ultimately
leads to good-quality personalized models.
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Figure 1. CDF of clients’ personalized model test accuracy for
PI-FL and FedSoft on Synthetic Data
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Figure 2. CDF of clients’ personalized model test accuracy for
PI-FL and FedSoft on CIFAR10 Dataset

4.3.2. Results on CIFAR10 data.

For evaluation with CIFAR10 Data, we use the same config-
urations as in subsection 4.3.1. We perform training for 500
rounds with both PI-FL and FedSoft. The Table 2 shows
the tier-level model test accuracies for PI-FL with CIFAR10
data. PI-FL accurately differentiates between clients of
different distributions. This is visible by the accuracy dif-
ference of each tier-level model on different distributions.
For example on the 10:90 partition c1 model has a 70.96%
accuracy on the θ1 distribution and has 2.56% accuracy
on θ0 which indicates that tier-level model c1 trains with
clients that have the majority of their training data from θ1.
Similarly, c0 trains with clients that have their majority of
training data from θ0 and has an accuracy of 62.78%.

Table 3 shows the tier-level model accuracy comparison of
PI-FL and FedSoft. The number inside the parenthesis along
with accuracy shows the distribution for which the tier-level
model performs best. For example, for the linear partition,
PI-FL c0 tier-level model has an accuracy of 61.66% for
distribution θ0 and 59.44% accuracy for distribution θ1. For
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Table 3. Test accuracy for PI-FL and FedSoft on CIFAR10 Dataset
10:90 30:70 linear random

c0 c1 c0 c1 c0 c1 c0 c1
PI-FL 62.68%(0) 70.96%(1) 53.28%(0) 61.94%(1) 61.66%(0) 59.44%(1) 66.90%(0) 58.42%(1)
FedSoft 32.50%(0) 38.62%(1) 20.28%(0) 23.58%(0) 34.42%(1) 49.62%(1) 21.62%(1) 33.12%(1)

Table 4. Test accuracy of ablation study with Incentive (PI-FL (I)) and without incentive (PI-FL (NI)).
10:90 30:70 linear random

c0 c1 c0 c1 c0 c1 c0 c1
PI-FL (I) 58.62%(0) 67.4%(1) 51.12%(0) 64.06%(1) 66.2%(0) 57.02%(1) 64.54%(0) 56.86%(1)
PI-FL (NI) 49.92%(1) 52.8%(1) 48.9%(0) 44.44%(1) 50.82%(1) 45.92%(1) 57.42%(1) 46.76%(1)

the linear partition with FedSoft, both c0 and c1 perform
best on only one distribution θ1 with accuracy 34.42% and
49.62%. Pi-FL outperforms FedSoft in terms of accuracy
for each partition and is able to distinguish between different
distributions accurately.
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Figure 3. CDF of clients’ personalized model test accuracy for
PI-FL and Ditto on EMNIST Dataset

4.3.3. RESULTS ON EMNIST DATASET

Since Ditto is not a clustering-based algorithm, we only
compare the test accuracy of personalized models on the
EMNIST dataset for PI-FL and Ditto in Figure 3. PI-FL
outperforms Ditto significantly, especially for highly hetero-
geneous data partitions such as 10:90 and linear. The reason
for this performance improvement is that, unlike Ditto, PI-
FL provides autonomy to clients to personalize according to
their own goals. With Ditto, the goal of each client which
consists of their private data is hidden from the aggregator
server which affects the quality of personalized models.

4.3.4. ABLATIAN STUDY WITH INCENTIVE IN PI-FL

We perform an ablation study with the incentive component
of PI-FL where we repeat the experiments from section
4.3.2 on the CIFAR10 dataset for 200 rounds using the same
settings and configurations, the only difference being that
clients do not consider maximizing their incentive while
sending preference bids. Instead, clients send preference
bids with random tier choices to the scheduler.

Table 4 shows the test accuracies of the tier-level models.
PI-FL(I) indicates that incentives are enabled and PI-F(NI)

shows the accuracies when incentives are disabled. In gen-
eral PI-FL(I) outperforms PI-FL(NI) in terms of test accu-
racy for all partitions. The important point to note here is
that the incentive mechanism in PI-FL directly motivates
clients to join tiers in which they can have the most contri-
bution. This results in accurate tiering based on client data
distributions and good-quality personalized models. This
is indicated by the performance of PI-FL(NI), i.e without
incentive, tier-level models are unable to dominate a single
distribution and only perform well for a single distribution
for all partitions except 30:70. Compared to this, in PI-FL(I)
each tier-level model dominates and performs well for their
distribution.

We also show a CDF of personalized test accuracies in Fig-
ure 4. It can be observed that except for the 30:70 partition,
the personalized test accuracies for all other partitions are
higher with the incentive enabled which means incentivizing
also has a direct impact on the personalized model quality.
We argue that the test accuracy for 30:70 is low in this case
because it is a less heterogeneous data case and PI-FL per-
forms best in cases where data is highly heterogeneous and
requires personalized learning.
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Figure 4. CDF of clients’ personalized model test accuracy for
PI-FL with and without incentive on CIFAR10 Dataset. (I)
indicates PI-FL with incentives enabled and (NI) indicates in-
centives disabled

5. Concluding Remarks
In this paper, we proposed PI-FL to address the challenges
of heterogeneity, privacy and accessibility in FL. Unlike
prior works that consider incentivizing and personalization
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as separate problems and propose standalone solutions, the
key idea for this paper was to conjoin both mechanisms in a
way that they complement each other. PI-FL connects a one-
shot tiering-based personalized FL algorithm with a token-
based incentive mechanism that produces good quality of-
fline personalized models while preserving clients’ private
data. Extensive empirical evaluation shows its promising
performance compared to other state-of-the-art works.
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A. Evaluating Client Contribution using Shapley value
Notation: Let [M ] denote the set {1, . . . ,M}, and A−B the set of elements in A but not in B. In this section, [M ] denotes
all the agents that participate in the coalition. We will consider those not participating in the near future.

We aim to look for a reasonable way to quantify the amount of each client’s contribution in a round. Suppose at any
particular round, the server obtains an aggregated model with parameter

W[M ]
∆
=

∑
m∈[M ]

λmWm, (15)

where λm is the weight (usually nm/n where nm and n are sample sizes of client m and all clients, respectively), and Wm

is the locally updated model of client m.

The prediction loss of the model with parameter W , denoted by L(W ), is approximated by

L(W ) ≈ 1

ntest

ntest∑
i=1

`(xi, yi;W ), (16)

where (xi, yi), i = 1, . . . , ntest, is a set of test data. At round t, we define the value function of a set of agents C based on
how much their contributed model, denoted by WC , has decreased the loss of the earlier model, denoted by Wt−1, namely

vt(C)
∆
= L(Wt−1)− L(WC), (17)

so that the larger the better. When there is no ambiguity, we simply write vt as v. It is worth noting that v is a function of the
set while L is a function of the parameter. Once C is realized, WC will become Wt for the next round.

Recall that the original Shapley value of agent m given a set of agents A and a value function v is defined by

∑
S∈A−{m}

|S|!(|A| − 1− |S|)!
|A|!

(v({S ∪ {m}})− v(S)), (18)

whose sum over all agents is equal to v(A) − v(∅). Here, ∅ represents the baseline coalition scenario, from which the
contribution of each agent is quantified. To highlight the dependency on baseline, we use B to denote the baseline and
rewrite (18) as

SHAP(m→ A | B) (19)

∆
=

∑
S∈A−{m}

|S|!(|A| − 1− |S|)!
|A|!

(v({S ∪ {m}} | B)− v(S | B)), (20)

where v(S | B) means the value of S conditional on the baseline B. In our scenario, B means the set of agents that are
already in coalition and thus

v(S | B)
∆
= v(S ∪B). (21)

Let us consider the baseline as B ∆
= [M ]− {i, j}. The corresponding baseline model will be

unnormalized version: W[M ]−{i,j}
∆
=

∑
m∈[M ]−{i,j}

λmWm, (22)

normalized version: W ∗[M ]−{i,j}
∆
=

1∑
m∈[M ]−{i,j} λm

∑
m∈[M ]−{i,j}

λmWm. (23)
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We consider an unnormalized version for brevity. The additional value by introducing i, j is

v({i, j} | [M ]− {i, j})− v(∅ | [M ]− {i, j}) (24)
use(21) = v([M ])− v([M ]− {i, j}) (25)
use(17) and recall (15)and(22) = L(W[M ]−{i,j})− L(WM ) (26)

=
1

ntest

ntest∑
i=1

{`(xi, yi;WM )− `(xi, yi;W[M ]−{i,j})} (27)

≈ 1

ntest

ntest∑
i=1

∇W `(xi, yi;WM )T(W[M ]−{i,j} −WM ) (28)

= −
(

1

ntest

ntest∑
i=1

∇W `(xi, yi;WM )

)T

(λiWi + λjWj). (29)

Next, we calculate how much agent i should be attributed to the above gain that is achieved by i, j jointly. To that end, we
calculate the Shapley value of agent i conditional on that agents in [M ]− {i, j} already participate, namely

SHAP(i→ {i, j} | [M ]− {i, j}) (30)

recall (20) =
∑

S∈{j}

|S|!(1− |S|)!
2!

(
v

(
S ∪ {i} ∪ ([M ]− {i, j})

)

− v
(
S ∪ ([M ]− {i, j})

))
(31)

=
1

2

(
v([M ])− v([M ]− {j}) + v([M ]− {i})− v([M ]− {i, j})

)
(32)

=
1

2

(
−L(WM ) + L(WM,−i)− L(WM,−j) + L(WM,−ij)

)
(33)

=
1

2

(
−L(WM ) + L(WM,−i) + L(WM )− L(WM,−j) + L(WM,−ij)− L(WM )

)
(34)

use (26)−(29) and alike ≈ −1

2

(
1

ntest

ntest∑
i=1

∇W `(xi, yi;WM )

)T

(λiWi − λjWj + λiWi + λjWj)

= −
(

1

ntest

ntest∑
i=1

∇W `(xi, yi;WM )

)T

λiWi (35)

which, interestingly, does not depend on j. As such, we use this to calculate the Shapley value of client i, denoted by

SHAP(i→ [M ])
∆
= −

(
1

ntest

ntest∑
i=1

∇W `(xi, yi;WM )

)T

λiWi. (36)

From Equalities (29) and (35), we can verify that

v({i, j} | [M ]− {i, j})− v(∅ | [M ]− {i, j}) = SHAP(i→ [M ]) + SHAP(j → [M ])

Remark A.1 (Intuitions). Intuitively, our derived Shapley value of client i in (35) can be regarded as the model’s marginal
reduction of the test loss by introducing client i. To see that, consider the following approximation based on first-order
Taylor expansion:

1

ntest

ntest∑
i=1

`(xi, yi;WM −∆)− 1

ntest

ntest∑
i=1

`(xi, yi;WMW ) (37)

≈ −
(

1

ntest

ntest∑
i=1

∇W `(xi, yi;WM )

)T

∆W, (38)
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which becomes the term in (35) when ∆W
∆
= λiWi. The above quantity approximates the amount of client i’s contribution

to decreasing the test loss of the server’s aggregated model, the larger the better.
Remark A.2 (Normalized counterpart). Suppose we use the normalized version introduced in (23) when considering the
baseline without clients i, j. Thus,

W ∗[M ]−{i,j} =
WM − λiWi − λjWj∑

m∈[M ]−{i,j} λm
(39)

= WM +
(λi + λj)WM − λiWi − λjWj∑

m∈[M ]−{i,j} λm
(40)

= WM −
λi(Wi −WM ) + λj(Wj −WM )

1− (λi + λj)
. (41)

Similarly, we have

W ∗[M ]−{i} = WM −
λi(Wi −WM )

1− λi
. (42)

Bringing the above formula into (34), we have

SHAP(i→ {i, j} | [M ]− {i, j}) (43)

=
1

2

(
−L(WM ) + L(WM,−i) + L(WM )− L(WM,−j) + L(WM,−ij)− L(WM )

)
(44)

≈ −
(

1

ntest

ntest∑
i=1

∇W `(xi, yi;WM )

)T

∆W ∗ where (45)

2∆W ∗
∆
=
λi(Wi −WM )

1− λi
− λj(Wj −WM )

1− λj
+
λi(Wi −WM ) + λj(Wj −WM )

1− (λi + λj)
. (46)

≈ 2λi(Wi −WM ) (47)

assuming small λi and λj . Therefore, under normalization we have

SHAP(i→ {i, j} | [M ]− {i, j}) ≈ −
(

1

ntest

ntest∑
i=1

∇W `(xi, yi;WM )

)T

λi(Wi −WM ). (48)

The intuition is the same as Remark A.1 except that the server model with client i satisfies

unnormalized version : W[M ]−{i} = WM − λiWi. (49)
normalized version : W[M ]−{i} ≈WM − λi(Wi −WM ). (50)

B. Multiple distribution Results
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Figure 5. CDF of clients’ personalized model test accuracy for PI-FL and Ditto on 4 and more distributions with EMNIST Dataset

PI-FL outperforms other FL personalization algorithms in heterogeneous cases when the clients and dataset are divided
between 2 distributions (DA & DB). To analyze the reliability of PI-FL it is also evaluated in highly heterogeneous conditions
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with 4 different distributions (DA, DB, DC, and DD) on the EMNIST dataset. EMNIST dataset has a total of 56 classes,
thus each of the 4 distributions gets 25% of total available classes. DA has the first 13 classes, DB has the next 13, and so on.
The figure 5 shows the CDF of test accuracy for all personalized models at clients. PI-FL outperforms Ditto for all partition
types. For the linear partition less than 10% clients have lower than 80% accuracy and we attribute this as an outlier due to
the partition type where dividing the data linearly some clients get very few data samples. This trend can also be seen with
Ditto for the linear partition.

C. Challenges Requiring Client Autonomy
Prior personalized FL works generate personalized models from the server’s perspective. We argue that the server may
not have complete information to produce good-quality models due to a variety of challenges (Kairouz et al., 2019; Li
et al., 2020a). These challenges are as follows: Confidentiality: Some clients may have sensitive data that they do not want
to share with others for privacy or security reasons. For example, a company may have confidential customer data that
they do not want to share with a third-party vendor, Competitive Advantage: In some industries, companies may want
to keep their data private to maintain a competitive advantage. For example, a company may not want to share its sales
data with competitors. Data Governance: Some organizations may have strict data governance policies that prohibit the
sharing of certain types of data. For example, a healthcare organization may not be able to share patient data without proper
consent. Resource limitations: Clients with large datasets may not have the resources to share all their data for training.
In these cases, they may choose to share a random sample of their data to keep the training process manageable. Data
Anonymization: Sometimes, clients may not want to share the raw data, but instead, they may share a subset of the data
which has been anonymized to protect the privacy of the individuals. Compliance with privacy laws: In order to comply
with privacy laws (GDPR (Regulation, 2018), HIPA (Act, 1996)) some clients might only share anonymized data while
keeping Personally Identifiable Information (PII) private.

D. Definitions for PI-FL
In this section, we provide definitions for Pi-FL.

Definition 1: A provider payoff rik ∈ R is individually rational if each provider can obtain a benefit no less than
that by acting alone, i.e., rik ≥ ri | ∀i ∈ N, ∀k ∈ K

Definition 2: On the basis of definition 1, we extend this definition to group rationality. Providers will join tiers
with greater similarity indexes compared to other tiers if their incentive is directly correlated with similarity and
performance, i.e.,

δ(i, k1) ≤ δ(i, k2)

, then
rik1 ≥ rik2 | ∀i ∈ N, ∀(k1, k2) ∈ K

where i ∈ N and N represents all clients, k ∈ K, K represents all tiers. rik represents the reward for client i in
tier k.

Definition 3: As the tier-level model converges, the personalized model generated from tier-level models will have
a similar performance compared to the tier-level model performance on the local dataset of client i | ∀i ∈ N as it
is a weighted mixture of the tier-level models

D.1. Theoretical analysis

We study the following particular case to develop insights. Suppose there are m clients in total, each observing a set of
independent Gaussian observations zi,j ∼ N (µi, σ

2), j = 1, . . . , ni, with a personalized task of estimating its unknown
mean µ ∈ R. The quality of learning result, denoted by µ̂, will be assessed by the mean squared error Ei(µ̂− µ)2, where
the expectation Ei is taken with respect to the distribution of client i.

It is conceivable that if clients’ underlying parameters µi’s are arbitrarily given, personalized FL may not boost the local
learning result. To highlight the potential benefit of tier-based modeling, we suppose that the m clients can be partitioned
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into two subsets: one with m1 clients, say T1 = {1, . . . ,m1}, and the other with m2 clients, say T2 = {m1 + 1, . . . ,m},
whose underlying parameters are randomly generated in the following way:

µi ∼ N (β1, τ
2), i ∈ T1, (51)

µi ∼ N (β2, τ
2), i ∈ T2. (52)

Here, β1 and β2 can be treated as the root cause of two underlying tiers. We will study how the values of sample size ni,
data variation σ, within-tier similarity as quantified by τ , and cross-tier similarity as quantified by |β1 − β2| will influence
the gain of a client in personalized learning. To simplify the discussion, we will assess the learning quality (based on the
mean squared error) of any particular client i in the following three procedures:

Local training: Client i only performs local learning by minimizing the local loss

Li(µ) =

ni∑
j=1

(µ− zi,j)2,

and obtains µ̂i = n−1
i

∑ni

j=1 zi,j . Thus, the corresponding error is

e(µ̂i) = Ei(µ̂i − µ1)2 =
σ2

ni
. (53)

Federated training: Suppose the FL converges to the global minimum of the loss,

m∑
i=1

ni
n
Li(µ), n

∆
=

m∑
i=1

ni,

which can be calculated to be µ̂FL =
∑m

i=1
ni

n µ̂i. Consider any particular client i. Without loss of generality, suppose it
belongs to tier 1, namely i ∈ T1. From the client i’s angle, conditional on its local µi and assuming a flat prior on β1 and β2,
client j’s µj follows µj | µi ∼ N (µ1, 2τ

2) for j ∈ T1 and j 6= i, and µj | µi ∼ N (µ1 + β2 − β1, 2τ
2) for j ∈ T2. Then,

the corresponding error is

e(µ̂FL) = Ei(µ̂FL − µ1)2 =

{∑
j∈T2

nj
n

(β2 − β1)

}2

+
∑

j=1,...,m,j 6=i

(
nj
n

)2(
σ2

nj
+ 2τ2

)
+

(
ni
n

)2
σ2

ni
. (54)

It can be seen that compared with (53), the above FL error can be non-vanishing if
∑

j∈T2

nj

n (β2 − β1) is away from zero,
even if sample sizes go to infinity. In other words, in the presence of a significance difference between two tiers, the FL may
not bring additional gain compared with local learning.

Tier-based personalized FL: Suppose our algorithm allows both tiers to be correctly identified upon convergence. Consider
any particular client i. Suppose it belongs to Tier 1 and will use a weighted average of Tier-specific models. Specifically, the
Tier 1 model will be the minimum of the loss∑

j∈T1

nj
nT1

Lj(µ), nT1
∆
=
∑
j∈T1

nj ,

which can be calculated to be µ̂T1 =
∑

j∈T1

nj

nT1
µ̂i. By a similar argument as in the derivation of (54), we can calculate

e(µ̂T1) =
∑

j∈T1,j 6=i

(
nj
nT1

)2(
σ2

nj
+ 2τ2

)
+

(
ni
nT1

)2
σ2

ni
. (55)

The above value can be smaller than that in (53). To see this, let us suppose the sample sizes ni’s are all equal to, say n0, for
simplicity. Then, we have

e(µ̂T1) =
m1 − 1

m2
1

(
σ2

n0
+ 2τ2

)
+

1

m2

σ2

n0
=
m1 − 1

m2
1

(
σ2

n0
+ 2τ2

)
+

1

m2
1

σ2

n0
=

1

m1

σ2

n0
+
m1 − 1

m2
1

2τ2, (56)
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which is smaller than (53) if and only if

τ2 <
m1σ

2

2n0
. (57)

The intuition is that if the within-tier bias is relatively small, the number of tier-specific clients is large, and data noise is
large, a client will have personalized gain from collaborating with others in the same tier.

E. CIFAR10 Dataset Results

Table 5. Test accuracy for FedSoft on CIFAR10 Dataset
10:90 30:70 linear random

c0 c1 c0 c1 c0 c1 c0 c1
θ0 32.5% 13.6% 20.28% 23.58% 8.48% 2.82% 16.18% 0.28%
θ1 11.76% 38.62% 0.18% 0.08% 34.42% 49.62% 21.62% 33.12%

Table 5 represents the result of FedSoft (Ruan & Joe-Wong, 2022) tested with the CIFAR10 dataset. The experimental
setup is explained in more detail in section 4.1. The rows represent the distributions of data where theta0 represents DA

and theta1 represents DB from section 4.1. The columns show the tier-level models (c0, c1) for each partition(10:90,
30:70,...). The numbers in the graph represent the accuracies of the tier-level models. We can observe that except for the
10:90 partition, FedSoft is unable to cluster clients under individual tiers in a way that each tier-level model could dominate
one distribution. Both tier-level models perform well on only one distribution and the other is ignored leading to low test
accuracy of both tier-level models for the ignored distribution.


