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Abstract— Epidural spinal cord stimulation has been
reported to partially restore volitional movement and auto-
nomic functions after motor and sensory-complete spinal
cord injury (SCI). Modern spinal cord stimulation platforms
offer significant flexibility in spatial and temporal para-
meters of stimulation delivered. Heterogeneity in SCI and
injury-related symptoms necessitate stimulation personal-
ization to maximally restore functions. However, the large
multi-dimensional stimulation space makes exhaustive
tests impossible. In this paper, we present a Bayesian
optimization strategy for identifying personalized optimal
stimulation patterns based on the participant’s expressed
preference for stimulation settings. We present compan-
ion validation protocols for investigating the credibility
of learned preference models. The results obtained for
five participants in the E-STAND spinal cord stimulation
clinical trial are reported. Personalized preference mod-
els produced by the proposed learning and optimization
algorithm show that there is more similarity in optimal
frequency than in pulse width across participants. Across
five participants, the average model prediction accuracy is
71.5% in internal cross-validation and 65.6% in prospective
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validation. Statistical tests of both validation studies show
that the ability of the preference models to correctly predict
unseen preference data is significantly greater than chance.
The personalized preference models are also shown to be
significantly correlated with motor task performance across
participants. We show that several aspects in participants’
quality of life has been improved over the course of the trial.
Overall, the results indicate that the Bayesian preference
optimization algorithm could assist clinicians in the system-
atic programming of individualized therapeutic stimulation
settings and improve the therapeutic outcomes.

Index Terms— Optimization methods, statistical learning,
Bayes methods, neural engineering.

I. INTRODUCTION

ELECTRICAL neuromodulation was first introduced
in 1967 for the treatment of chronic pain. Initially tran-

scutaneous to stimulate large fibers according to the gate
theory of pain, it was later modified to be an implantable
epidural spinal cord stimulation (eSCS) unit [1]. Neuromod-
ulation of the spinal cord (directly or indirectly) has since
been successfully used to treat chronic pain and was serendip-
itously found to restore volitional movement in patients with
multiple sclerosis as early as the 1970s [2]. In the past
decade, there has been growing interest in the utilization of
eSCS to restore volitional movement after chronic spinal cord
injury (cSCI).

Currently, there is no treatment for cSCI, and until now,
patients with motor-complete injuries have minimal hope
of substantial recovery of volitional movement chronically
(>1 year from injury) [3], [4]. Modern reports of success-
ful partial restoration of function after chronic and stable
SCI provide mounting evidence that neuromodulation may
provide a significant and scalable treatment [5]–[7]. Despite
these encouraging case reports and series, numerous chal-
lenges remain to be solved before a definitive clinical trial.
Technological advancement of implantable neuromodulation
platforms provides increasing flexibility for tailoring spatial
and temporal neuromodulation to each patient, but large, high-
dimensional flexibility requires efficient algorithmic optimiza-
tion tailored to each patient with particular pathology and each
underlying physiologic system.

Research on animal models has demonstrated a var-
ied response in volitional movement based on stimulation
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parameters [8]. This variation was further indicated in human
models, thus leading to the need for spatiotemporal opti-
mization of eSCS parameters that are customized for each
patient [9], [10]. The observed variation in response to the
stimulation parameters may result from the heterogeneity of
SCIs, thus indicating the importance of discovering optimal
parameters that are specific to the patient. There are tril-
lions possible settings for a 16-lead paddle; thus, for elec-
trical stimulation therapy to be used clinically, an efficient
methodology for selecting the optimal settings needs to be
developed. Current literature on eSCS optimization method-
ologies for eliciting volitional movement after cSCI is limited.
The majority of the literature is focused on animal models,
and the optimization strategies vary widely among groups.
In 2013, Capogrosso et al. developed a computational model
that combined a 3D finite element method with a model
of the rat spinal cord to determine the spinal circuits and
fibers recruited by eSCS. This model allowed for simulations
of various electrode configurations to predict the optimal
parameters for standing and walking in rats [11]. A Bayesian
optimization-based active learning algorithm was developed
to select bipolar stimuli to elicit specific muscle responses,
measured by electromyography (EMG), in spinally transected
rats [12]. Another animal model focused on the optimization
of stepping by varying the stimulus intensity, frequency, and
pulse-to-pulse timing. The optimal intensity and frequency
were first determined subjectively by study personnel. These
parameters were then evaluated again using kinematic data
and EMG along with differing stimulation pulse intervals [13].
Similarly, one group applied quantitative gait variables from
3D kinematic data recordings to obtain optimal parameter
combinations [8].

The literature on stimulation optimization in human models
is even more limited than that in animals, and different opti-
mization objectives and strategies have been tried in different
studies. One study obtained a motor neuron activation map for
each participant to determine which regions of the spinal cord
were activated during specific muscle tasks. A computational
model was then employed to perform simulations identifying
optimal electrode configurations [10]. EMG mapping data
have also been utilized to select optimal parameters [14].
The limit in the methodologies for performing optimization
demonstrates a clear need to devise a novel, comprehensive
approach to the selection of optimal eSCS parameters for
volitional movement.

In recent years, machine learning-based optimization tech-
niques have been utilized to optimize spinal cord stimulation
in human clinical trials. Preference feedback was collected to
represent the multifaceted effects of stimulation on a human
participant. Utilizing human preference feedback data for treat-
ment optimization holds potential for achieving personalized
treatment while maintaining the therapeutic effect without the
need to perform various expensive medical measurements.
The comparison of options and expression of a preference
for one over others also avoids problems associated with
human ratings, such as variations in the scale between par-
ticipants and at different times by the same participant [15].
A related algorithm, called the “correlational dueling bandit”

algorithm, allows the effectiveness of untested stimulations to
be inferred based on similar tested ones. This algorithm was
used to facilitate the discovery of optimal spatial stimulation
configurations for standing-frame training using physicians’
preference feedback [16]. Another algorithm, called stagewise
safe Bayesian optimization, has the benefit of enforcing safety
in making decisions of stimulation recommendation, and was
used in finding optimal stimulation for a tetraplegic patient in
gripping experiments [17].

In the last decade, attempts have been made to create
models that distinguish the optimal eSCS parameters, but
the validation of these methods has not been extensively
considered. Experimental studies on anesthetized rats utilized
evoked EMG responses to validate their hybrid computational
model [11]. While machine learning-based optimization algo-
rithms have been applied in experiments and clinical studies
to optimize stimulation parameters, rigorous validation studies
have not been presented in the work to validate the accuracy
of the models and the reliability of the optimal stimulation
parameters. In studies that applied those techniques, the opti-
mal configuration selected by the algorithm was validated only
by comparing it with the configuration selected by human
experts [12], [16], [17].

The Epidural Stimulation After Neurologic Damage
(E-STAND) trial examines the effect of eSCS on volitional
movement and autonomic function in participants with motor-
complete thoracic SCI [5]. Acknowledging the heterogeneity
in SCI, the trial emphasizes the discovery of optimal stimula-
tion parameters based on the individual. This paper presents
a Bayesian preference learning-based optimization method for
eSCS, discusses the optimization results of five participants
from the E-STAND trial, and highlights the validation studies
and their results to illustrate the effectiveness of the proposed
optimization method.

II. METHOD

A. E-STAND Study Criteria

This study was performed in accordance with Hennepin
County Medical Center’s Institutional Review Board approval
and Food and Drug Administration Investigational Device
Exemption approval. The participants identified in this
study have provided informed consent and authorization to
present publicly identifiable information for research pur-
poses. The study protocol is registered with ClinicalTrials.gov
(NCT03026816). Patients with chronic (more than one year
since injury), traumatic SCI were recruited if they met the fol-
lowing criteria: greater than 22 years of age, motor-complete
AIS classification A or B with a neurological level of injury
between C6 and T10, full arm and hand strength, and intact
segmental reflexes below the level of injury. Participants were
excluded if they had medical or psychological comorbidities
that would significantly increase the risk associated with the
operation or if they had severe dysautonomia with systolic
blood pressure fluctuations below 50 or above 200 mmHg
on autonomic testing, contractures, pressure ulcers, recur-
rent urinary tract infection refractory to antibiotics, unhealed
spinal fracture, recent botulinum toxin use, or pregnancy.
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Fig. 1. Schematic of the Abbott stimulator’s electrode paddle.

The demographics of the five participants can be found in
the supplementary materials. These five participants are the
early participants who have completed the 80% of trial visits
at the time of writing this manuscript.

B. Setting Optimization

1) Spinal Cord Stimulation Optimization Protocol: Each par-
ticipant in the E-STAND study is implanted with the stim-
ulator a month prior to the stimulator being turned on and
programmed with stimulation settings for optimization. The
implanted stimulator is an Abbott stimulation unit composed
of a Proclaim 7 Elite battery and a Lamitrode Tripole paddle
with a 16-electrode array, as shown in Fig. 1.

The E-STAND study primarily focuses on the optimiza-
tion of temporal parameters, i.e., frequency and pulse width.
The optimal electrode spatial configurations are heuristically
determined before the third visit through clinician tuning
and EMG measurements. During the first two visits, several
spatial electrode configurations are tested by the physician
and evaluated based on the participant’s acute movement
response. A “mapping” session is also performed to collect
EMG measurements of muscle twitch in response to a large
set of spatial stimulation configurations at 2 Hz. The spatial
configurations that induce the most movement or prominent
muscle activation are individually combined with a series of
temporal parameters for further at-home evaluation between
visits. At the third visit, the spatial configuration that is most
preferred by the participant is considered to be the optimal
spatial configuration. After the third visit, the optimization
method primarily focuses on temporal parameters revolving
around the optimal spatial configuration. To be noted, the
stimulation amplitude is controlled by the participant through
a patient programmer each time when a stimulation setting is
used, hence it is not optimized in conjunction with frequency
and pulse width.

Each participant has 13 follow-up visits arranged
30-45 days apart. During the first 12 visits, the participant’s
stimulator is programmed with a set of 15 settings to be
tested at home. Participants are blinded to the stimulation
parameters associated with the settings, and any old settings
that are reassigned to the participant are randomly given a
new program number. The set includes both settings focused
on restoring volitional movement and settings focused on
restoring autonomic function. When at home, the participant
is instructed to use one volitional setting each day according
to a calendar that establishes the sequence of settings to

TABLE I
OPTIMIZATION PHASES FOR EACH ESTAND PARTICIPANT

be tested. The participant uses volitional programs for a triple
flexion and extension leg exercise task (further described
in the supplemental materials) and other movement-related
activities. At the end of the day, the participant evaluates
the current setting in an online survey by comparing it
with the last one, and they may optionally compare it with
any settings that the participant has used since the most
recent visit. Here we enforce binary comparison evaluations
instead of evaluation scores as a scoring metric tends to
drift over time [15]. The optional comparisons data between
current day’s setting with any previous settings used in the
current month are treated equally as the collected mandatory
comparison data.

At the end of each month, a preference model is built based
on the participant’s daily preference evaluations. This model
is able to give preference predictions on untested parameters,
and new settings with high predicted preference scores will be
included in the next set. In a case of 9 volitional settings, 6 are
usually new, untested settings, and the other 3 are previously
tested settings that gave desirable results to ensure an ethical
distribution of settings. When the optimized temporal para-
meters converge and the preference model presents a decent
prediction accuracy, other reasonable spatial configurations are
further tested with the optimal temporal parameters as a refine-
ment step in the last two or three months. The different phases
of optimization and objectives are summarized in Table I.

2) Stimulation Optimization Algorithm: The algorithm for
spinal cord stimulation optimization presented in this paper is
under a Bayesian optimization framework, and the optimiza-
tion goal is to maximize a patient’s preference level by finding
the optimal temporal stimulation parameters, i.e., frequency
and pulse width. The optimization algorithm consists of three
parts. The first part fits a preference model, in the form
of a Gaussian process, to cumulatively collected comparison
data; the second part, called sampling, determines a new set
of settings based on the model; and the third part, called
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Fig. 2. Example of a one-dimensional Bayesian optimization plot with
relational comparison data. The black dashed line is the fitted preference
value function, and the blue region is the confidence bound.

sequencing, determines the sequence of settings to be used
in the following month. The sequence essentially determines
which two settings are going to be directly compared against
each other.

a) Bayesian preference modeling: Preference modeling is
performed to find a best-fit relationship between a latent vari-
able representing a participant’s unobserved preference level
and options through Bayes’ rule. The best-fit preference model
is essentially the posterior distribution computed through
Bayes’ rule and the predictive distribution of preference values
for unobserved options. Again, in our application, the data set
used to extract the model is composed of binary comparisons.

We utilize probit modeling with Gaussian process-modeled
latent variable to describe preferential, binary observations,
i.e., the likelihood in Bayes’ rule. Probit modeling enables
us to derive the probability expressions of binary outcomes.
The Gaussian process-modeled latent variable also dictates
the prior distribution expression in Bayes’ rule. The Gaussian
process property is inherited in the posterior distribution with
some approximation, which subsequently enables us to derive
the predictive distribution. The details of this part of the
algorithm can be found [15].

Fig. 2 shows an example of a preference model built based
on four binary comparisons. The red dots connected by arrows
represent comparisons that have been evaluated, and the arrows
point from the losing setting to the winning setting. The
dashed line represents the mean of the fitted Gaussian process
preference variable, and the blue shaded area represents the
confidence bound.

b) Batch sampling: After the preference model is devel-
oped, the sampling algorithm chooses new queries in the
parameters to perform the next test. The new queries should
strike a balance between the exploration of untested parameter
regions and the exploitation of tested parameter regions that
are known to give desirable results. The balance is dictated by
the so-called acquisition function. There are different forms
of acquisition functions with different properties, and we use
the Upper Confidence Bound (UCB) for our application. The
UCB acquisition function is a weighted sum of the mean and
standard deviation predicted by the fitted preference model.

Fig. 3. Pseudo-code of the batch sampling algorithm.

For the example in Fig. 3, the weights in the UCB acquisition
function are both one, and the green dot is the next sample
point, as the UCB is the highest at that location.

The Abbott stimulator used in the study holds up to
15 different settings, and we are able to program the device
with new settings only during once a month clinical visit.
Therefore, the sampling algorithm needs to determine a batch
of new parameters to sample instead of one. We designed
a batch sampling algorithm that sequentially selects top q
parameter locations (q is the batch size) from the candidate
pool. To select each sample, the algorithm first simulates the
outcomes of comparing of each setting in the pool against
the incumbent, which is the tested setting that has the highest
UCB; the algorithm then refits a model considering both the
observed data and the simulated data. The parameter that
produces a model with the highest sum UCB (S-UCB) is
included in the batch and deleted from the candidate pool.
Fig. 3 shows the pseudo-code of the batch sampling algorithm.

c) Sequencing: The last part of the algorithm arranges the
settings to be tested in a sequence to maximize the infor-
mation obtained from the pairwise comparisons; the result-
ing sequence becomes the “calendar” that guides program
usage. The sequence algorithm is called the “hub-and-spoke”
algorithm, producing sequence that only compares the top m
settings (hub settings with the highest predicted preference
values) to the rest and to each other. The produced sequence
maximizes the information that confirms if the high preference
value still holds for the hubs and quickly spots new settings
that win over the hubs. The hub-and-spoke algorithm also
eliminates repeated comparison between hub and non-hub
settings but allows for repeated comparison between hubs.
Another example of the “hub-and-spoke” algorithm sequence
can be found in the supplemental materials.

C. Validation Protocol

We designed the validation studies’ protocols with two
goals. One goal is to examine the prediction accuracy of the
learned preference models, which is achieved through internal
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validation and prospective validation studies. In both studies,
models trained with a sub-dataset are used to predict the
outcomes of the rest, and the model prediction accuracy is then
taken as the percentage of accurate predictions. The second
goal is to examine the relevance of the preference model’s
prediction to volitional movement in response to stimulation.

Internal validation is conducted as 5-fold cross-validations
across 5 participants. For each participant, the cross-validation
randomly partitions the participant’s preference dataset from
the temporal optimization phase into 5 equal folds; each fold
is then sequentially held as the testing set, and the preference
model is trained with the remaining 4 folds. The internal
validation accuracy is then the average model prediction
accuracy averaged across all 5 folds. The results of this
internal validation study from the 5 participants are discussed
in section III.B.1.

Prospective validation is also performed to show the
prediction accuracy of the preference model. This validation
study protocol requires additional preference data to be col-
lected at the end of each participant’s temporal parameter
preference learning phase. In the prospective validation study,
the participant tests 9 or 10 different stimulation settings in
a row and then tests the same settings again in a different
order. The participants are asked to compare two sequential
settings based on a 30 s triple flexion and extension task. The
tested stimulation settings have been previously used by the
participant, and the preference scores associated with those
selected settings span the score range produced by the model.
The prospective validation accuracy is determined by how well
the model predicted outcomes match up with the observed
outcomes. The results of the prospective validation study are
described in section III.B.2.

Clinical outcome validation is performed to examine the
correspondence between an objective measure of the partici-
pants’ volitional movement response and the preference model
prediction for the same stimulation parameters. The volitional
movement measurement is extracted from the daily triple
flexion and extension task performed by the participants. The
analysis and results are further described in section III.C.

III. RESULTS

A. Preference Model
The results of stimulation parameter optimization for five

participants are presented here. Preference models developed
at the end of the temporal parameter optimization phase are
shown as heatmaps in Fig. 4. In the heat maps, regions that
have higher preference values are indicated by a brighter
hue. The tested stimuli’s temporal parameters are indicated
by plus-sign markers on the preference surfaces to illustrate
the progress of stimuli testing. The marker’s color indicates
how recent the stimulus was tested; the color scale spans the
rainbow, with blue indicating settings that were last tested
earlier in the study and red representing settings that were last
tested recently in the study. The size of the marker indicates
how many times that stimulus was tested. Generally, stimuli in
preferred regions are tested more than those in less preferred
regions since a participant’s favorite settings can be used many
times within each month and for several months.

According to the preference maps, multiple preferred para-
meter regions can exist for each participant. At the end of the
study, the participants’ devices are programmed with a set of
settings that covers parameters from those preferred areas.

B. Preference Model Validation

1) Internal Cross-Validation: Ten repeats of five-fold internal
cross-validation was conducted on each participant’s dataset
to evaluate the prediction accuracy of the Bayesian preference
model. For each time, the comparison data set collected for
each participant are randomly divided into five even folds.
Iteratively holding one-fold of data as the testing data set,
and other 4 folds as the training data set to assess the
model prediction accuracy. The average prediction accuracy
across all folds and all repeats and its standard deviation
are used here to present the average model performance for
each participant. The individual cross-validation accuracies
with the corresponding standard deviations are displayed as
scatter plots in Fig. 5. We conducted a one-sample t-test
with a null hypothesis that the mean cross-validation accuracy
is 50%. The null hypothesis represents the situation in which
the participant’s response and stimulation setting preference
provide no useful information and so there is a 50% chance
of correctly guessing the outcome. The test shows that the
mean cross-validation accuracy is significantly higher than
50% (p-value=0.002). The observed cross-validation accuracy,
averaged across 5 participants, is 71.4% with a standard
deviation of 7.1%.

We find that the cross-validation accuracy of the preference
model is positively correlated with the participant’s compli-
ance and with the signal to noise ratio (SNR) estimated from
each data set. The compliance is represented by the number of
comparison pairs that have been collected for each participant
and subsequently used to develop each participant’s preference
model shown in Fig. 5. Participants who assess stimulation
settings persistently and provide answers to optional compari-
son question, i.e., comparing current-day setting with settings
previously used from the same month, would produce a larger
data set and hence higher compliance. Fig. 5 (a) plots the
model’s cross-validation accuracy against the participants’
compliance and displays the regression line, which has a
correlation coefficient of 0.94. The slope of the regression
line is 0.025% (p-value=0.02), indicating that every additional
100 comparisons is predicted to improve the cross-validation
accuracy by 2.5%. The positive correlation relationship is also
found between the model’s cross-validation accuracy and the
estimated signal to noise ratio as plotted in Fig. 5 (b). The
noise is incorporated in the probit preference model to handle
the inconsistencies in the observations and can be estimated
through a hyperparameter optimization routine when fitting
a preference Gaussian process model [21]. Since the fitted
preference value spectrum varies individually, the SNR is
reported here instead of the noise alone as a quantification
of the inconsistencies found in each participant’s data. The
SNR for participant i is defined as:

SN Ri = Fitted preference score range for participant i

Noise estimated from participant i �s data set
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Fig. 4. Individual response surfaces representing the overall volitional preferences from 5 participants. For each participant, subplot (a) shows the
preference map on a full parameter range enclosing all the setting tested, and subplot (b) shows a close-up map for the parameter range where
includes most tested settings for each participant. The specific range plotted in (b) are highlighted by the dash squares in (a).

Fig. 5. Cross-validation accuracy. (a) Cross-validation accuracy vs.
compliance. (b) Cross-validation accuracy vs. SNR. In both subplots,
scatter plot with error bars to show the means and standard deviations
for the 5-fold cross-validation accuracy for each participant.

The correlation coefficient is 0.95. The slope of the regres-
sion line is 3.37% (p-value = 0.01), indicating that an
improvement SNR value of 1 is predicted to improve the cross-
validation accuracy by 3.37%.

To further investigate the impact of SNR and compliance
to the cross-validation accuracy, we conducted 5-fold cross-
validation on 10 randomly subsampled datasets for P1, 2, 4,
5, respectively. Each randomly subsampled dataset has the

same size as P3’s original data set (220 pairs of comparisons),
as P3 provided the least amount of comparison data. It shows
that reducing number of data widens the range of cross-
validation accuracy within each participant. The average cross-
validation accuracies from the subsampled datasets still follow
the positive linear correlation trend as shown using the blue
regression line (slope = 2.33, p-value = 0.01, correlation
coefficient = 0.97) in Fig. 5 (b).

2) Prospective Validation: Prospective validation studies
were performed on the 5 participants as the protocol described
in II.C. The prediction accuracy of each participant’s prefer-
ence model in matching the observed outcomes is reported in
Table II. Overall, the average prediction accuracy is 65.63%,
and the result of a one-sample t-test shows the average pre-
diction accuracy is higher than 50% with a p-value of 0.0275,
indicating that the preference model significantly helps to
predict the correct preferred setting. Though participant 2’s
model prediction accuracy is lower than 50%, the accuracy
increases to 72.73% if comparisons involving only the top
4 settings (according to the preference model prediction) are
considered. Similar accuracy increases also appear for the
other 3 participants when considering the subset involving
only the top 4 settings. This is because the top settings are
usually tested more times than the inferior settings when devel-
oping preference models and finding optimal stimulations.
Consequently, the average prediction accuracy for this sample
subset increases to 72.15%, and the result of the one-sample
t-test shows that the mean accuracy from the prospective
validation study is higher than 50% with a p-value of 0.001.
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Fig. 6. Models of task score vs. preference score and/or month number and the corresponding data. (a) GLMM population-level predictions of task
scores based on preference scores are shown by the black line, and the shaded area represents the 95% confidence interval of the population-
level predictions. The GLMM is fitted to all five participants’ data. The task score for each triple flexion and extension task and the corresponding
preference score based on the stimulation parameter settings are shown in the scatter plot. (b) GLMM population-level predictions of task scores
based on month number (c) The response surface shows the task score from the fixed-effects prediction in the fitted GLMM. The GLMM is fitted to
all 5 participants’ data.

We performed another statistical test showing that the
success rate of the preference model predictions is higher
than 50% based on the total number of comparisons and
accurate predictions from all 5 participants. To construct
the test, we considered the prediction of the outcome of a
pairwise comparison a binomial process. For all 5 participants,
the outcomes of 62 pairwise comparisons out of 96 match the
model prediction; the probability of this observation happen-
ing is 0.0014 if the binomial process success rate is 50%.
Therefore, the prospective validation study statistically shows
that the preference model learned through Bayesian prefer-
ence optimization is representative of the participant’s true
preference.

C. Clinical Validation of Optimization

1) Movement Metrics and Task Score: We constructed
power-based metrics based on Inertial Movement Unit (IMU)
signals to measure leg movement during each performed task.
In each task, an average active trial is obtained by averaging all
repeated active trials in the task; the peak and baseline values
of the average active are used to compute the task performance
metric values, i.e. task scores. The further description on the
task scores construction can be found in the supplementary
materials.

2) Validation of Preference Learning With Task Score: Motor
response is an important metric for evaluating the effectiveness
of the optimization-guided eSCS therapy. Motor responses are
characterized by task scores computed based on IMU signals
collected during daily triple flexion and extension tasks. In this
section, we present the results from a generalized linear
(mixed) model (GL(M)M) analysis correlating the movement
task score to the preference score and/or the therapy time. The
GLMM analysis was performed in R (version 4.0.0). In each
following analysis, the Akaike information criterion (AIC) is
used to select the optimal predictor formulation; the optimal
probability distribution and link function are found through

TABLE II
SUMMARY OF PROSPECTIVE VALIDATION

ACCURACY FROM 5 PARTICIPANTS

residual diagnosis performed by the DARHMa package [18].
For all the GLMMs presented in the following, the optimal
probability distribution and link function are found to be the
Gaussian distribution and the log link function.

Fig. 6 shows the GLMM population-level regressions of the
task score with respect to the preference score in (a), the month
number in (b), and both as in (c). The preference scores are
normalized into the same [0, 1] range for each participant.
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The population-level regression formula is as follows:

log T askScore = −0.71∗∗∗ + 1.57Pref Score∗∗

− 1.02Pref Score2(∗),

where both the preference score (PrefScore) and the squared
preference score (PrefScore2) are found to be significant
covariates with the outcomes, indicated by the asterisks.
As shown by Fig. 6 (a), the population-level regressed task
score increases linearly up to a normalized preference score
of 0.7, after which it plateaus, and the confidence interval
widens. Similarly, we performed GL(M)M analysis of the
task score with respect to the number of treatment months.
The population-level regression formula is: log(TaskScore) =
−0.95(∗∗∗)+0.28MonthNum(∗∗∗)−0.02MonthNum2(∗∗∗),
where both the linear and quadratic terms of the month
number are found to be significant covariates. As shown in
Fig. 6 (b), the task score improves for the first 7 months
of the study and then appears to deteriorate up until the
end of the study. GLM fitted to each participant’s data are
presented in the supplemental materials, presenting differences
among individual’s trends. To determine if task performance
is dependent upon both the preference score and the length
of treatment, a final GLMM is regressed using linear and
quadratic terms of both the preference score and the treatment
month number. The interaction term between preference score
and the treatment month number was found to be insignificant
and therefore was not included in the final GLMM based on
the AIC. The population-level regression formula in the best-
fit GLMM is as follows:

log T askScore = −1.17∗∗∗ + 0.25Month Num∗∗∗

+ 0.94Pref Score∗−0.02MonthNum2(∗∗∗)

− 0.73Pref Score2(∗)

Fig. 6 (c) shows the response surface of the task score
given by the month number and preference score based on
fixed-effects predictions. The surface shows that an average
participant’s task performance improves monotonically in the
first 6 months with respect to the normalized preference score
up to 0.6-0.7. Then, the task scores plateau and slightly
decrease as the month number increases while staying around
the peak with respect to the preference score covariate. The
fitness of the regression in an individual participant’s case is
also shown in the supplementary materials.

3) Quality of Life Improvement: Patients with cSCI often
experience adverse effects in multiple body systems, suffer
from many secondary complications, and must cope with
altered social roles and psychiatric comorbidities [19]. Though
regaining volitional control is an obvious priority, other
improvements such as reducing injury-related pain, elevating
energy levels, and regulating blood pressure are also greatly
appreciated by the patients and may be reflected in the
improvement of the patient’s quality of life. ESTAND par-
ticipants fill out the Patient Health Questionnaire-9 (PHQ-9)
and the WHO Quality of Life (QOL)-Bref questionnaire at
each visit. Further explanation on the questionnaires can be
found in the supplemental materials.

GLMM analysis was performed to detect significant trends
in the quality of life scores over time in the 5 participants, and
the results are shown in Fig. 7. The baseline scores recorded
prior to each participant’s device implantation surgery are
labeled as the “−1” visit. Subfigure (a) shows that for the
PHQ-9 score, the visit number was not a significant covariant,
indicating that statistically, the stimulation usage did not
have a significant negative impact on the patients’ mental
state. Through GLMM analysis of the WHOQOL-Bref scores,
shown in subfigures (b-f), we found that the physical health,
psychological health, and environmental domain scores are
significantly positively correlated with the visit number at a
population level. Based on the fitted values of the slopes,
an average patient’s quality of life scores may improve by
4.16 in the physical health domain, 1.69 in the psychological
domain, and 2.34 in the environmental domain after a period
of one to one and half years of stimulation therapy usage
and optimization. The WHOQOL-Bref summary score and the
social relation domain score were not found to be significantly
correlated with the visit number at a population level, as shown
in subfigures (b) and (e), respectively.

IV. DISCUSSION

Epidural spinal cord stimulation has attracted growing inter-
est as a promising treatment for chronic spinal cord injury
patients. Due to the heterogeneity in injuries, the optimal
therapy needs to be personalized. In this paper, we developed
a Bayesian optimization-based preference learning algorithm
to optimize the frequency and pulse width of stimulation
based on an individual participant’s at-home evaluation, which
was conducted through online preference surveys. The algo-
rithm constructs participant-specific preference models that are
then used to suggest new therapeutic settings that efficiently
explore the broad parameter space and also focus in optimal
parameter regions. To validate the efficacy of the algorithm,
we examined resulting preference models quality through
internal and prospective validation studies. The preference
models were also validated against motor outcomes, which
is the primary clinical outcome, to confirm the correlation
between the preference models’ predictions and leg movement
responses to stimulation. The clinical outcome validation study
is important for proving that human perception data and
learning are instructive to the development of personalized
eSCS therapy for patients with cSCI.

The first objective of this study was to show that the
Bayesian optimization-based preference learning algorithm
produces credible participant-specific models. We validated
the model internally, where the model was used to predict
preferences in a 5-fold cross-validation study, and prospec-
tively, where model predicted for new, unseen comparisons
obtained at the end of the study. The average accuracy across
5 participants’ preference model was 71.5 in internal valida-
tion, and 65.6% in prospective validation; both of these values
are significantly higher than chance levels, with p-values of
0.001 and 0.03, respectively. We also found that the preference
models better predict the outcomes of comparisons involving
top-rated stimulation settings, which have been tested often,
than those of comparisons between settings, which were not
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Fig. 7. Mixed models of quality of life scores vs. visit number. Participants’ raw scores are presented as scatter plots. GLMM population-level
predictions are shown as black lines, and the shaded areas represent the 95% confidence intervals. The GLMMs are fitted to all five participants’
data in each case. The slopes and their p-values are provided for each GLMM. There are significant improvements in the physical health, psychological
health, and environment domains from the WHOQOL-Bref analysis. The social relations domain is trending towards significance. The PHQ-9 score
can range from 0 to 27, where a lower score indicates a healthier mental state. Subfigures (b)-(f) present the WHOQOL-Bref scores for which
higher score values indicate better health states, and individually, each score in subfigures (b)-(f) can range from 2-10, 7-35, 6-30, 3-15, and 8-40,
respectively.

favored and thus were not sampled as often and not well
characterized. These results support the central hypothesis
that Bayesian preference learning produces participant-specific
models that can predict participant’s preferences for settings
better than chance.

The second objective of this study was to show that the
preference models are correlated with the motor responses.
In the study, we utilized daily leg movement tasks to track the
motor response to a series of settings. Through GLMM analy-
sis, we found that for an average participant, preference scores,
i.e., the preference models’ judgement of the effectiveness
of a setting, are significantly correlated with motor response,
as shown in Fig. 6 (a). This result confirms that the patient
preference model reflects motor outcome. However, the motor
task score plateaus at the high end of the preference score
range. This result suggests that the preference score does not
perfectly reflect the motor task score. A patient’s preference
depends on many aspects imparted by the therapy that are not
well characterized by the motor task score, such as precision in
volitional control, comfort, and the suppression of spasticity.

The third objective of the study was to determine if the
length of treatment has a significant effect on the motor score.
To test this relation, we looked at the time effects of the
GLMM analysis and found a significant positive correlation
between the motor score and time, as shown in Fig. 6 (b). The
motor response improved for the first two-thirds of the study
and then dropped slightly at the end. One possible explanation
for the decrease in motor task score at the end of the study is

that the scores were constructed based on the IMU power; this
metric favors large magnitude gross movements and is not as
sensitive to lower magnitude and finer controlled movements.
As participants gain better control of their limb movements
over the course of the study, their objective switches from
gross movement to finer controlled movement and precision.
This change may result from improvements in motor control
with use of the device as a result of learning and plasticity
and from the optimization of the stimulation parameters based
on preference. This study was not designed to distinguish
between these effects. Finally, it is possible that the stimulation
efficacy decreases over the one or one-and-half years study
period after implantation. Further studies will be needed to
identify the precise cause of this decrease in motor score over
time. However, from this model of motor score vs. time, it is
not possible to determine if the changes in motor score arise
from improvements imparted by the use of the device or from
Bayesian optimization.

The fourth objective of the study was to determine if
Bayesian optimization improved patient outcomes. To test this
premise, we fit a GLMM that regressed motor scores to both
treatment time and preference score. The resulting model,
whose response surface is shown in Fig. 6 (c), shows that
the motor scores are dependent on both the preference score
and treatment time, allowing us to conclude that preference
optimization influences the motor score that is independent
of time. Furthermore, the population-level dependency of
the motor responses on treatment time and preference score
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was found to be nonlinear and non-monotonic, as seen in
the models that fit the preference score and treatment time
independently. To further evaluate the influence of Bayesian
optimization on patient outcomes, we also tested the premise
that stimulation therapy has a positive impact on a patient’s
quality of life in general. Fig. 7 shows that three out of six
quality of life scores improved significantly at a population
level over the course of the trial; these scores were the
WHOQOL-Bref physical health, psychological health, and
environmental domains. The WHOQOL-Bref summary score
and social relations domain score are positively correlated
with the visit number, but the correlations are not statistically
significant. The PHQ-9 score shows that there is an insignifi-
cant negative correlation between the mental health state and
the visit number. Three participants’ PHQ-9 scores constantly
remained below 5, suggesting that these patients were not
suffering from depression, and participant 4 and 5’s PHQ-9
scores increased after the start of the clinical trial but stayed
below 10, which is categorized as mild depression. Though
there was no evidence that the use of stimulation was the
major cause of their increased depression scores, neither of the
participants experienced complications caused by the stimula-
tion, as indicated in their daily evaluation of stimulation notes.
While the current optimization did not include quantifiable
biometrics, they could be added into the objective function
along with the preference in the optimization.

The fifth objective was to determine if there is any com-
monality in the preference models of temporal stimulation
parameters and optimal parameter regions across participants.
We found that the preferred stimulation frequencies all fall
in the range 28 Hz to 44 Hz, whereas the preferred pulse
widths exhibit more individual variation, as shown in Fig. 4.
The response surfaces for the motor function preferences are
shown in Supplemental Fig. 2, and the corresponding optimal
parameters are similar to the overall preference maps and their
optimal parameters. This similarity indicates that the motor
responses are the main factor considered in a participant’s
assessment of overall preference. However, the optimal para-
meters for motor function are not necessarily the best for
other outcomes. Supplemental Fig. 3 shows preference maps
based on Participant 1’s preference answers on other outcomes,
i.e., transfer, posture, comfort, spasticity, and rehabilitation.
The optimal parameters for posture and spasticity shifted to
[36 Hz, 400 µs] from [40 Hz, 450 µs], which are the optimal
parameters for overall preference. These results suggest that
the optimal stimulation settings may have some common
ranges across patients but that significant differences still exist
across patients and outcomes, and these differences merit
patient-specific optimization.

A patient’s preference may not be static and may slowly
migrate over time. Preferences might not be static for several
reasons, one being that the patient’s objective may change over
time. For example, their initial preference may focus on the
amplitude of movement and then later shift to the control of
movement or other more subtle benefits that may align better
with improvements in quality of life, i.e., the suppression of
spasticity and comfort. We have also observed that function
has been restored in patients even after stimulation is turned

off [20], indicating that there may be plasticity effects that
lead to changes in the response to stimulation and possibly the
temporal parameter preference. If preference drifts over time,
it might not be appropriate to weight more recent data heavier
than earlier samples, but this study treated them equally.

V. CONCLUSION

Here we presented an eSCS optimization framework based
on preference learning and Bayesian optimization for the
treatment of patients with cSCI. The novelty of this stimu-
lation optimization approach lies in the utilization of patients’
self-reported preference data to build personalized preference
models and Bayesian optimization to suggest new stimulation
parameters to be tested. Using patients’ self-reported at-home
evaluation preference data balances several factors related
to the patient’s objectives, reduces the cost associated with
in-clinic measurements, and increases the number of patient
evaluations of settings.

The personalized preference models obtained for the five
E-STAND participants show that there is more similarity
in optimal frequency than pulse width across participants.
Validation studies and analysis indicate that there are benefits
in using preference models to determine optimal stimulation
settings. Both internal cross-validation and prospective valida-
tion studies show that the prediction accuracy of the preference
models produced through optimization are significantly higher
than chance. Across five participants, the preference scores
from individual preference model are significantly positively
correlated with motor outcome and treatment month at a
population level.

Overall, the results indicate that the Bayesian prefer-
ence optimization algorithm may assist clinicians in the
systematic programming of individualized therapeutic stim-
ulation settings. Quality of life scores also indicate signifi-
cant population-level improvement through the course of the
therapy.

To our knowledge, our work is the first to systematically
validate eSCS optimization results across multiple participants
in terms of both the algorithmic accuracy and clinical outcome.
The validation of clinical outcome can be further improved
by constructing more interpretable and revealing movement
metrics, such as leg travel distance, designing precision mea-
sured tasks, and including muscle activation measures, such
as EMG data.
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